Barriers To Enrollment in CREST 2: How Can They Be Overcome?

Mark F. Conrad MD MMSc
W. Darrin Clouse, MD

Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA

Primary Goal of CREST-2

• In patients with ≥70% asymptomatic stenosis, to assess:
 • The treatment differences between medical management and CEA
 • The treatment differences between medical management and CAS

Patient Selection

Based on CREST:
• For ages 50-74 years, no favored procedure
• For ages <50 years, CAS is the favored procedure
• For ages >74 years, CEA is the favored procedure
• BUT, in CREST asymptomatic patients had few events, so there were wide confidence intervals

So, the choice of CEA or CAS cannot be mandated in CREST-2...

...and individual patient characteristics and preferences may supersede guidelines

Objective

• The goal of this study was to assess our enrollment and randomization practices for CREST-2 in an effort to determine effects of exclusion criteria and treating physician specialty on screening and recruitment of asymptomatic patients with severe carotid stenosis.

Disclosures

Medtronic – consultant, member of CEC
Volcano – consultant, member DSMB
Bard – member of CEC
Methods - Patients

- Creation of Patient Cohort
- From 7/1/2015 to 12/31/2015, all carotid duplex ultrasound studies (CDUS) were reviewed.
- CDUS meeting CREST-2 criteria for ≥70% stenosis were identified.

Duplex Criteria

- PSV ≥ 230 cm/second on DUS
- plus one of the following 4 criteria:
 - EDV ≥ 100 cm/second on DUS
 - IC / CC PSV ≥ 4.0 on DUS
 - ≥ 70% stenosis on MR angiogram
 - ≥ 70% stenosis on CT angiogram

Methods - Patients

- Treating physicians were contacted by study nurses to determine why patients were excluded from the study
- Electronic medical records and institutional trial screening data were used to assess method of management and neurologic outcome.

Results

- 139 patients who had a ≥70% carotid stenosis by CDUS
- 17 presented with symptomatic disease
- 15 patients who had <70% stenosis on additional imaging.
- 107 patients in the cohort
 - 76 (71%) 70-89%
 - 31 (29%) 90-99%.

Patient Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Age</td>
<td>73 yrs</td>
</tr>
<tr>
<td>Male Gender</td>
<td>58%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>81%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>38%</td>
</tr>
<tr>
<td>CAD</td>
<td>70%</td>
</tr>
<tr>
<td>Statin</td>
<td>88%</td>
</tr>
</tbody>
</table>

Results

- Primary Treating Provider
 - Vascular Surgeon | 73 (68%)
 - Cardiology/ Vascular Medicine | 20 (19%)
 - Neurologist | 14 (13%)
- 4 /107 (3.7%) patients randomized
 - 3 CAS arm
 - 1 CEA arm
Results

- 103 (96.3%) patients not randomized
- 64 (62%) had at least 1 exclusion criterion
 - Cardiac
 - Renal
 - Prior intervention

Exclusion Criteria

- Allergy to Study Medication
- GI Hemorrhage precluding antiplatelet therapy
- Prior major ipsilateral stroke with residual disability that will confound outcomes
- Severe dementia
- History of major symptomatic intracranial hemorrhage not related to anticoagulation
- Intracranial hemorrhage that is contraindication to anticoagulation or antiplatelet therapy
- Current neurologic illness that can not be distinguished from stroke
- Objection of blood transfusions
- Platelet count < 100,000/ul

Enrollment by Provider

<table>
<thead>
<tr>
<th>Provider</th>
<th>CREST Random</th>
<th>Comorbid Exclusion</th>
<th>Pt Refused/ Not Considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgeon (73)</td>
<td>0</td>
<td>40 (55%)</td>
<td>33 (45%)</td>
</tr>
<tr>
<td>Cardiology/VM (20)</td>
<td>1 CAS</td>
<td>16 (80%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Neurology (14)</td>
<td>2 CAS</td>
<td>8 (57%)</td>
<td>3 (21%)</td>
</tr>
</tbody>
</table>

Surgeon Reluctance

- Patterns of Referral
 - CEA Expected
 - Not a CREST Surgeon
- Lack of clinical equipoise
 - 70%-89% - more likely to randomize
 - 90%-99% - less likely to randomize
Treatment by Provider

<table>
<thead>
<tr>
<th>Provider</th>
<th>CAS</th>
<th>CEA</th>
<th>Medical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgeon (73)</td>
<td>8</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>Cardiology/VM (19)</td>
<td>4</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Neurology (11)</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Summary

- Nearly 2/3 of patients with >70% asymptomatic carotid stenosis were not eligible for CREST-2
- Another 23% refused to participate
- Only 4% of those identified were randomized
- Enrollment and treatment dependent upon provider seen
- Neurologists most likely to enroll
- Surgeons least likely to enroll
- 75% of patients enrolled in CAS arm

Conclusions

- Strict exclusion criteria and reluctance of surgeons to enroll patients suggest that completion of the CEA arm of the trial will be challenging
- Slow enrollment will make it difficult for CREST to answer the questions for which it was designed