1470nm Laser with Covered Fiber
Vs
Modern Radiofrequency
Vs
NTNT

SIMPLE ANSWER

PRO:
THEY ALL CAN DO THE JOB*
(DEPENDING ON THE CIRCUMSTANCES)

CONS:
THEY ALL HAVE FLAWS
PROCEDURAL DIFFICULTY
TUMESCEENCE
PROCEDURAL COST
INSURANCE COMPANY ADOPTION

FOR THIS LECTURE
I WILL TAKE THE HIGH ROAD
AND NOT COMPARE THE DEVICE PROS AND CONS
11/25/2015

ABSORPTION CURVES

Pro

- Flexibility of kits
- Versatility
- Economics
- Safety profile
- Ease of recovery
- History

EndoVenous Laser Procedure and Variations
Preparation of the Patient

Percutaneous Insertion Supplies

Kit flexibility
- 19 g thin walled needle with 035 system long or short sheath
- 18 g needle with 035 system long or short sheath system
- 18 g wire long sheath system
- 18 g wire short sheath system and direct fiber insertion
- 21 g 018 micropuncture system
- Direct system 018

Laser Kit

Tumescent Anesthesia

GSV Ablation
Small Saphenous Ablation

Fiber

just before the SSV “dives” to the popliteal vein
2-3cms from the Junction

Other Veins that you can Rx

• Giacomini
• anterior and posterior thigh circumflex
• Anterior great saphenous vein
• SPOT WELDING SEGMENTS
 open segments of failed truncal ablations
 neovascularization

LASER REIMBURSEMENT

• Established and durable code 36478 and 36479
• Adequate office reimbursement
 • non-facility-facility fee
 • Professional fee

Pro Clinical Outcomes

PRO ECONOMICS

• Established and durable code 36478 and 36479
• Adequate office reimbursement
 • non-facility-facility fee
 • Professional fee
Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins

L. H. Rosenmann, M. Lazania, L. Eyer, S. Venturo, A. Momose and E. Ellul

Background: This randomized trial compared four treatments for great saphenous varicose veins (GSVs) including: (1) endovenous laser ablation, (2) radiofrequency ablation, (3) foam sclerotherapy, and (4) surgical stripping. The primary outcome was reflux of the great saphenous vein (GSV) in saphenous vein insufficiency. The secondary outcomes were post-operative pain, function, and patient satisfaction.

Methods: 300 limbs from 200 patients were randomized to one of four treatment arms. The primary outcome was reflux of the GSV in saphenous vein insufficiency. The secondary outcomes were post-operative pain, function, and patient satisfaction.

Inclusion criteria:
- Symptomatic varicose veins with GSV reflux
- C2 – C4

Exclusion criteria:
- Previous DVT
- Axial deep venous reflux

Patent GSV with Reflux

<table>
<thead>
<tr>
<th></th>
<th>EVLA N=144</th>
<th>RFA N=148</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>.053</td>
</tr>
<tr>
<td>1 month</td>
<td>1 (0.7)</td>
<td>0 (0)</td>
<td>.20</td>
</tr>
<tr>
<td>1 year</td>
<td>7 (5.8)</td>
<td>6 (4.8)</td>
<td><.001</td>
</tr>
</tbody>
</table>

30-day Complications

<table>
<thead>
<tr>
<th></th>
<th>EVLA N=144</th>
<th>RFA N=148</th>
<th>UGFS N=144</th>
<th>Stripping N=142</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlebitis*</td>
<td>4</td>
<td>12</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Infection</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Hyperpigmentation</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Haemorrhage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* P=.006

Disease Specific Quality of Life (AVVSS)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>3 days</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>1 month</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1 year</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

P=NS

Cons

- Anatomy difficulty
- Capital expense
- Procedural issues
- Learning curve
- Recovery

Capital Expense
Procedural Issues

Tumescent Anesthesia (7 needle punctures)

Anatomical Difficulties

Superficial Accessory Saphenous Vein

This is Why

Theoretical Nerve Issues
LEARNING CURVE

Time line Rx 40cm GSV

Recovery

Laser Covered-tip Vs RF

85 patients completed treatment and follow-up examination

Conclusion