Pros And Cons Of RF

Jose I. Almeida, MD, FACS, RPVI, RVT
Voluntary Professor of Surgery
University of Miami School of Medicine
Director, Miami Vein Center

Current Approaches to CVI Treatment

Clinical efforts endovenous electrosurgical desiccation 1964 - 1994

1995 - VNUS Medical Technologies, Inc. is founded

RF Ablation

1997 - Closure Catheter

Preclinical testing
• Determine optimum temperature and time.
• Histology, mechanism of action

Multiple third-degree skin burns
20% saphenous nerve injury1-2

- Bipolar RF energy
- RF energy used to shrink veins
- Restore vein valves to competence
RF Ablation

1998
- First case: Bern, Switzerland
- Mathias Widmer, MD
 - Temperature-controlled at 85°C
 - General anesthetic
 - No tumescent anesthesia
 - High ligation of GSV on all patients
 - Pneumatic tourniquet on thigh

Key Article
- Lurie F
 - Prospective Randomized Study of Endovenous Radiofrequency Obliteration (Closure Procedure) versus Ligation and Stripping in Selected Patient Population (EVOLVeS Study).

Closure (1st Generation)
- Electodes transfer radiofrequency energy to vein wall
 - (EMR 300kHz – 1 MHz)
 - Atoms in vein wall excite and release thermal energy at 85°C (resistive heating)
 - Faster Recovery
 - Less post-op pain
 - Fewer adverse events
 - Superior QOL scores
GSV Treatment: ClosureFast™ Catheter* : 5-Year Data

- Prospective, multicenter single-arm study
- Purpose: To evaluate long-term effects of RF segmental ablation of GSV using the CLF catheter
- 326 patients (396 limbs) were treated with the ClosureFast™ catheter at 13 sites (8 Europe, 5 US).
- Follow-up: Patients were evaluated at 3, 6, 12, 24, 36, and 60 months post-procedure, 278 limbs followed to 5 years.

Primary Endpoints
- Vein occlusion and absence of reflux in the treated vein as determined by duplex ultrasound (DUS) imaging.
- Vein occlusion was defined as absence of any blood flow along the entire length of the treated vein segment assessed by DUS imaging.

Secondary Endpoints
- Presence of complications and side effects from the greater saphenous vein (GSV) intervention
- Quality of Life-Status of clinical signs and symptoms of lower limb venous disease.

Prospective, multicenter single-arm study

Purpose:
To evaluate long-term effects of RF segmental ablation of GSV using the CLF catheter

326 patients (396 limbs) were treated with the ClosureFast™ catheter at 13 sites (8 Europe, 5 US).

Follow-up:
Patients were evaluated at 3, 6, 12, 24, 36, and 60 months post-procedure, 278 limbs followed to 5 years.

Primary Endpoints
- Vein occlusion and absence of reflux in the treated vein as determined by duplex ultrasound (DUS) imaging.
- Vein occlusion was defined as absence of any blood flow along the entire length of the treated vein segment assessed by DUS imaging.

Secondary Endpoints
- Presence of complications and side effects from the greater saphenous vein (GSV) intervention
- Quality of Life-Status of clinical signs and symptoms of lower limb venous disease.
Defined as bruising over greater than 25% of the treated surface area

- **Speed**
- **Power setting**
- **Fiber tip**
- **Wave-lengths**

RECOVERY Trial – Results

Pain score at follow-up visits

- **ClosureFast Catheter**
- **Laser**

- Post-procedure ultrasound results:
 - **ClosureFast Catheter**
 - **Laser**

RECOVERY Trial – Results

Quality of life (VCL-SI) scale 0 (good) to 10 (bad)

- **ClosureFast Catheter**
- **Laser**

Complication Rates

<table>
<thead>
<tr>
<th>Complication</th>
<th>1 Week</th>
<th>1 Month</th>
<th>1 Year</th>
<th>5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paresthesia</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Erythema</td>
<td>1.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Infection</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Pain</td>
<td>1.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Panphlebitis</td>
<td>1.0%</td>
<td>2.0%</td>
<td>0.5%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

RECOVERY® Study

- **Purpose**: Ablation for the treatment of Great Saphenous Vein reflux
- **Follow-up**: Patients were evaluated at 48 hours (24-72 hrs), 1 week, 2 weeks, and 1 month post-procedure
- **Primary**: Post-op pain, severity of bruising and adverse events
- **Secondary**: Vessel occlusion, VESS, reflux, tenderness, QoL

Study Design

- Prospective, multicenter, single-blinded, randomized
- 87 Veins in 69 Patients
- RFA VS. LASER

NOTE: Lower score reflects a better quality of life.
Rasmussen Study: Trial Comparing EVLA, RFA, Foam Sclerotherapy and Surgical Stripping for GSV

Study Design

- 500 patients (580 limbs) with GSV reflux were randomized to receive either
 - Endovenous laser ablation
 - Radiofrequency ablation
 - Ultrasound-guided foam sclerotherapy
 - Surgical Stripping

- Completion rate: 125 (25%)
- Ultrasound-guided foam sclerotherapy (126 patients)
- Surgical Stripping (124 patients)
- Duplex ultrasound imaging was done before and after the procedure

- Follow-up: Patients assessed at 3 days, 1 month, and 1 year post-intervention

Primary endpoint

- GSV closure expressed as vessel patency (treatment failure) one year post procedure

Secondary endpoints

- Pain scores post intervention-visual analog scale 0-10
- Scores of SF-36™/
- Scores of Aberdeen Varicose Vein Symptom severity Score (AVVSS)
- Venous Clinical Severity Score (VCSS)

- 500 patients (580 limbs) with GSV reflux were randomized to receive either
 - Radiofrequency ablation (n=125*)
 - Endovenous laser ablation (n=124*)
 - Vein Stripping (n=123*)
 - Ultrasound-Guided Foam Sclerotherapy (n=123*)

<table>
<thead>
<tr>
<th>Study</th>
<th>Efficacy at 1 year (reflux-free rate)</th>
<th>Post Intervention Pain Scores* (1 – 10)</th>
<th>Time to return to normal activities (days)</th>
<th>Time to resume work (days)</th>
<th>Indirect cost (€) Lost work</th>
<th>Total costs (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Ablation</td>
<td>95.2%</td>
<td>1.21 (p<0.001)</td>
<td>2.9 (p<0.001)</td>
<td>1120</td>
<td>560</td>
<td>1996</td>
</tr>
<tr>
<td>Endovenous Laser Ablation</td>
<td>94.2%</td>
<td>2.58 (p<0.001)</td>
<td>4 (p<0.001)</td>
<td>1120</td>
<td>840</td>
<td>2200</td>
</tr>
<tr>
<td>Vein Stripping</td>
<td>95.2%</td>
<td>2.25 (p<0.001)</td>
<td>6.5 (p<0.001)</td>
<td>1120</td>
<td>1120</td>
<td>2199</td>
</tr>
<tr>
<td>Ultrasound-Guided Foam Sclerotherapy</td>
<td>83.7%</td>
<td>1.60 (p<0.001)</td>
<td>2 (p<0.001)</td>
<td>1120</td>
<td>560</td>
<td>1559</td>
</tr>
</tbody>
</table>

*In the 10-day period post-procedure.

Conclusion

Pros Of RF

1. 15 years of data
2. Built-in reimbursement system
3. Radio frequency now more "commonplace term"
4. Quicker recovery than laser, more durable than foam.

Cons Of RF

1. Tumescent anesthesia required
2. Closes truncal vein, leaves varicosities
3. Catheters expensive

Thank You!