RESULTS FROM A MULTI-CENTER, RETROSPECTIVE REVIEW OF THE AFX ENDOGRAFT FOR USE IN AORTOILIAC OCCLUSIVE DISEASE

Thomas Maldonado, MD
Associate Professor
Department of Vascular Surgery
New York University Langone Medical Center

Treatment of Aortoiliac Occlusive Disease

Aortobifemoral bypass

- **Operative mortality 3 – 7%**
 - Higher for elderly and comorbidities
- **Hospital length of stay 6-13 days**
- **10-year patency 75 – 95%**
 - Lower for younger and female patients
- **SVS-reported patency lower in patients with critical limb ischemia**

1. Chiu KW et al. EJVES 2010
3. Indes JE et al. JVS 2010
4. Hertzer NR et al. JVS 2007
5. SVS Guidelines Writing Group, JVS 2015

“Kissing” Balloons and Stents

- Distal aortic and proximal iliac lesions difficult to treat endovascularly
- **Kissing balloons described in 1985**
- **Kissing stents described in 1991**
- **Limitations:**
 - Limited data on performance in CLI
 - Decreased patency in more complex lesions, particularly involving significant portions of the infrarenal aorta

1. Tegtmeyer CJ. Radiology. 1985

Kissing Stents

- Patency affected by
 - Radial mismatch associated with failure
 - Crossing stent configuration associated with patency loss
- **Raises the bifurcation**

Data on Patency of Kissing Stents

<table>
<thead>
<tr>
<th>Study</th>
<th>3 year</th>
<th>4 year</th>
<th>5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haulon 2002</td>
<td>79%, 98%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shafafuddin 2008</td>
<td>81%, 94%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abello 2012</td>
<td>65%, 82%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Above studies have significant variability of TASC classification and Rutherford category
- Primary assisted patency 65% at 2 years in more advanced TASC lesions
- Covered stents appear to have better patency than bare metal stents in TASC C and D lesions
- This effect may also apply to “kissing” stents
CERAB Technique

- 3 Covered Stents to Reduce Radial Mismatch
- Requires large, covered stents to cover distal aorta -- not available in U.S.

Endologix AFX Stent Graft

- Unibody design for AAA repair (EVAR)
- Sits on the aortic bifurcation
- Sizes from 22mm to 28mm with various iliac sizes and lengths
- Low 17F profile (percutaneous)
- Percutaneous approval

Role in Aortoiliac Occlusive Disease?

Division of Vascular and Endovascular Surgery

AFX : Advantages for AIOD

- Preserves aortic bifurcation
- Avoid the possibility of 'missing' CIA lesion
- No limb competition in a narrow distal aorta
- Fabric allows for significant oversizing without wrinkle / in-folding
- Does not preclude future aortic interventions (TEVAR etc)
- "Covered" stent - protective in cases of potential rupture (heavily calcified lesions)

Why AFX? Pro’s and Con’s

PROS

- Avoid the possibility of ‘missing’ CIA lesion as with CIA stents (kissing technique)
- No limb competition in a narrow distal aorta
- No gate cannulation in narrow distal aorta
- Low profile, at least on one side
- Has percutaneous approval
- Recreates/preserves aortic bifurcation (no competing kissing stents)
- Useful in recannalization
- Does not preclude future aortic interventions (TEVAR etc)
- Just one piece
- Low morbidity and mortality

CONS

- Larger profile sheath
- Poor radial force
- Adjunct stenting is required
- Procedure is time consuming for occlusive disease
- Requires higher level of endovascular skill
- Procedure Code not available (yet)
- Risk of thromboembolism (?)

Multicenter Retrospective Review: AFX for AIOD

- 91 patients (10 centers)
- IRB approved retrospective review
- Aorto-Iliac Occlusive disease (non-aneurysmal)
- Demographics
- Procedural detail
- Technical Success
- Clinical Success (Rutherford classification, ABI’s)
- Follow-up: Mean 363d ± 275
Multicenter Retrospective Review
10 Centers, 91 patients

Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>68 ± 10</td>
</tr>
<tr>
<td>Male Gender (n)</td>
<td>62%</td>
</tr>
<tr>
<td>ASA Class</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>19%</td>
</tr>
<tr>
<td>III</td>
<td>61%</td>
</tr>
<tr>
<td>IV</td>
<td>20%</td>
</tr>
<tr>
<td>Ambulatory Status</td>
<td></td>
</tr>
<tr>
<td>Ambulatory</td>
<td>93%</td>
</tr>
<tr>
<td>Amb w/ assistance</td>
<td>5%</td>
</tr>
<tr>
<td>Wheelchair</td>
<td>2%</td>
</tr>
</tbody>
</table>

Baseline Risk Factors / Medical History

- Smoker
- Hypercholesterolemia
- Hypertension
- Coronary Artery Disease
- Cerebral Disease
- PCI
- PAD Endovascular
- CTA
- CTA
- COPD
- CABG
- CVI
- CVA/CAS
- Major Amputation
- AAA Repair

Rutherford Classification

<table>
<thead>
<tr>
<th>Rutherford Classification</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

TASC Classifications

- A: n=1 (1%)
- B: n=12 (13%)
- C: n=4 (4%)
- D: n=74 (82%)

Candidates for Open Surgery

- Unfit for open repair: 39%
- Candidates for open repair: 61%
Oversizing in 12mm tube…

TASC D Lesions

Courtesy of Zachary Arthurs, MD
Procedural Characteristics

- General Anesthesia 98.9%
- Technical success 100%
- Non-percutaneous access 59%
- Mean Blood Loss 200cc
- Median hospital stay 3 days

Procedural Complications

<table>
<thead>
<tr>
<th></th>
<th>N=70</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groin Infection</td>
<td>6</td>
<td>7%</td>
</tr>
<tr>
<td>Respiratory Failure</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>Groin Hematoma</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>Rupture</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>Hemodynamic Instability</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Dissection</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>Thromboembolic Event</td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>Iliac Injury</td>
<td>2</td>
<td>3%</td>
</tr>
<tr>
<td>Femoral Thrombosis</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
<td>1%</td>
</tr>
</tbody>
</table>

30 Day Mortality: 1 (1%)

Improvement in Rutherford Classification

Over 80% improvement between 3 to 5

Follow-up = Change from baseline to last available visit

Improvement in ABI

Follow-up = Change from baseline to last available visit
Division of Vascular and Endovascular Surgery

Type	**Number of Patients (n=80)**	**Planned vs Unplanned**
Total patients | 56 (64%) |
Endovascular Procedures | 51 (63%) | 25 planned
 - Aortic Stent | 10 (11%) | Palmaz (unplanned)
 - Iliac Stent | 41 (51%) |
Surgical Procedures | 34 (39%) | 23 planned
 - CFA Endarterectomy | 30 (37%) | 25 planned
 - Bypass | 6 (7%) | 5 planned

Adjunctive Procedures:
56 patients (64%)

Secondary Interventions:
8 patients (9%): angioplasty/stenting

<table>
<thead>
<tr>
<th>Intervention Site</th>
<th>Total (n patients)</th>
<th>1 Month</th>
<th>6 Months</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aorta</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Common Iliac Artery - Left</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Common Iliac Artery - Right</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>External Iliac Artery - Left</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>External Iliac Artery - Right</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Common Femoral Artery - Left</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Common Femoral Artery - Right</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Freedom from Secondary Interventions:
90% @ 1 Year

Graft Patency

<table>
<thead>
<tr>
<th>Patency</th>
<th>30d</th>
<th>6 mo</th>
<th>1 yr</th>
<th>2 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>98.4% (n=62/63)</td>
<td>97.2% (n=69/71)</td>
<td>94% (n=44/47)</td>
<td>100% (n=24/24)</td>
</tr>
<tr>
<td>Assisted</td>
<td>100% (n=63/63)</td>
<td>100% (n=71/71)</td>
<td>97.8% (n=46/47)</td>
<td>100% (n=24/24)</td>
</tr>
<tr>
<td>Secondary</td>
<td>100% (n=47/47)</td>
<td>100% (n=24/24)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations of the Technique
- Larger profile sheath
- 4cm main body
- Potential for coverage of collaterals
- Requires higher level of endovascular skill
- Cost? (depends on procedure being compared)

Conclusions:
AFX for treatment of AIOD
- High technical success, even in TASC C and D
- Low 30-day mortality and low procedural complication rate
- Primary patency 95-100% throughout follow-up
- Freedom from Secondary interventions: 90%
- Procedure can be safely combined with adjunctive lower extremity interventions (usually planned)
Conclusions: What's next?

- Improvement in design: increased radial strength of limbs to avoid need for adjunctive iliac stenting
- Prospective trial
- Cost analysis/Coding