4-French Infragenual Interventions In An Outpatient Setting Are Safer And Effective: What Equipment Is Needed

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
Lugano
Switzerland

VEITH symposium 2015
New York, November 16-21 2015

Conflict of interest
• None

Why 4F?
• Because we now have the tools
 – Balloons (0.018” and 0.014” guidewire compatible)
 – Stents (0.018” guidewire compatible)
 – Long introducer sheaths (popliteal and BTK procedures)

What is available in 4F?
• Balloons
 – Longest length 6 x 250 mm
 – Largest diameter 8 x 40 mm
• DCB
 – Up till 4 x 120 mm
• Stents (self-expanding)
 – Largest diameter 8 x 80 mm
 – Longest length 7 x 200 mm
• All material for BTK (typically <3.7F)

Why 4F stents?
• Thinner strut
 – Less material in the wall
 – Less inflammation-reduction of restenosis
 – Less fractures
• Lower radial force
 – Less trauma to internal elastic lamina
 – Less restenosis

Why 4F stents?
• Smaller access
 – Shorter compression time (6F vs. 4F is an 81% bigger hole)
 – No need for closure device (cost reduction)
 – Less puncture site related complications
 • 294 consecutive procedures, 8 minor complications (self-limiting hematoma, no surgery/transfusion)=2.7%
 – Office-based procedures
Why 4F?

• More versatility
 – Femoral (antegrade/retrograde cross-over)
 – Popliteal/pedal
 • Failed antegrade approach
 • Obesity

What can we do with 4F

• All SFA and BTK
• All iliacs < 7 mm in diameter (4F SE stents available until 8 x 80 mm)
Occlusion external iliac artery

After 4F stenting (6 mm)

Versatility

Durability/radial force

2011 2014

4EVER study

- Prospective, non-randomized, multi-center study
- 120 patients (Astron Pulsar n= 70; Pulsar-18 n=46, mixed n=4)
- Average lesion length: 7.2 cm ± 4.78

Bosiers M et al JET 2013;20:746-756
Outcomes 4EVER study

• Primary patency
 – 12 months 81.4%
 • Non-calcified lesions 82%
 • Calcified lesions 80.2%
 – 24 months 72.3%
• Freedom from TLR
 – 12 months 89.3%
 – 24 months 82.7%

Access site complications

• Relevant hematoma n=4 (3.34%)
 – 3 major haematoma requiring transfusion, 1 minor haematoma
 – No surgical repair required
 – 3 out of 4 patients were on Coumarine therapy
• Reduced manual compression time as compared to 6F (literature)

TASC D

• Single center, prospective study of long SFA stenosis and occlusion (TASC D)
• 22 patients with 22 lesions
• Mean stented length 245 mm (range 215-315)
• Average lesion length 315 mm
• At 12 months
 – Primary patency 77%
 – Freedom from TLR 86%

PEACE

• 118 patients (all-comers)
• Lesion length 111.5 ± 71.4 mm
• CTO 56.8%
• Outcomes at 12 months
 – Primary patency
 • Overall 79.5%
 • Lesions > 100 mm 78%
 – Freedom from TLR 81%

4F versus 6F

What do we need?

• Learn to work with 0.018” (or smaller) guide wire compatible devices
• Think of using these smaller bore devices
Conclusions

• 4F peripheral intervention is feasible and safe
• Low profile stents have acceptable radial force, with data to support efficacy in complex lesions