What Are The Drivers Of Cost For Treating SFA Occlusive Disease And Impact On Outcomes

Karen Walker, M.D. Jesse Columbo, M.D. Eva Rzucidlo, M.D. Philip Goodney, M.D./MPH; Richard Powell, M.D.

Section of Vascular Surgery Dartmouth-Hitchcock Medical Center

Presenter Disclosure Information

Richard J Powell, MD

FINANCIAL DISCLOSURE:
Consultant: AnGes Inc Boston Scientific
Committees: Bard: LEVANT
Current Grants/Research Support: NIH NHLBI

Purpose

• To determine what factors drive the cost of SFA interventions.

• To determine if increased cost (more complex devices) improves outcomes

Methods

• Retrospective chart review patients undergoing initial SFA stenting between Jan 1, 2010 and Feb 1, 2012.

• Exclusion criteria included SFA stenting with simultaneous iliac or tibial intervention and inpatient status.

Supply Cost

• This analysis focuses on procedure supply cost per case in hospital based setting.

• Supply cost includes the cost of all materials used for the procedure.

• Excludes indirect costs and salaries – Vary depending on health care setting

Total Cost vs. Procedure Supply Cost

$25,000
$20,000
$15,000
$10,000
$5,000
$0

0
5,000
10,000
15,000

Procedure Specific Supply Cost

R² = 0.64
Cohort Characteristics

- N = 98 cases
- Mean age: 70.8
- Male: 57%
- HTN: 82.6%
- HLD: 69.3%
- CAD: 26.5%
- DM: 39.8%
- CKD: 11.2%
- COPD: 21.43%

Mean age: 70.8
- Claudication: 61.2%
- CLI: 38.8%
- TASC A: 43.8%
- TASC B: 35.7%
- TASC C: 12.2%
- TASC D: 8.1%

Significant Variability of Supply Cost

Which Procedure Variables Impact Supply Cost?

- Indication and TASC severity were evaluated to identify associations:
 - Mean Supply Cost
 - Use of Adjuncts
 - Number of Stents

What Patient Specific Factors Impact Cost

- Indication and TASC severity were evaluated to identify associations:
 - Mean Supply Cost
 - Use of Adjuncts
 - Number of Stents

Effect of Indication on Procedure Specific Supply Cost

- No trend was found for cost and indication.
- Claudication
 - N = 60
 - Mean Supply Cost: $3,430
 - Adjunct Use (%): 18.3%
 - Number of Stents: 1 (70%), 2 (23.3%), 3+ (6.6%)
- CLI
 - N = 38
 - Mean Supply Cost: $4,206
 - Adjunct Use (%): 21.0%
 - Number of Stents: 1 (55.2%), 2 (31.6%), 3+ (13.1%)

Effect of Indication on Procedure Supply Cost and Cost Drivers

<table>
<thead>
<tr>
<th></th>
<th>Claudication N = 60</th>
<th>CLI N = 38</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Supply Cost</td>
<td>$3,430</td>
<td>$4,206</td>
<td>0.14</td>
</tr>
<tr>
<td>Adjunct Use (%)</td>
<td>18.3%</td>
<td>21.0%</td>
<td>0.79</td>
</tr>
<tr>
<td>Number of Stents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>70%</td>
<td>55.2%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23.3%</td>
<td>31.6%</td>
<td></td>
</tr>
<tr>
<td>3+</td>
<td>6.6%</td>
<td>13.1%</td>
<td></td>
</tr>
</tbody>
</table>
Effect of TASC Severity on Procedure Specific Supply Cost

A significant trend was found for cost and TASC lesion severity, $p < 0.01$.

Effect of TASC on Supply Cost

<table>
<thead>
<tr>
<th></th>
<th>A: $2,458</th>
<th>B: $3,954</th>
<th>C: $4,554</th>
<th>D: $8,365</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Supply Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Adjunct Use (%)</td>
<td>11.6%</td>
<td>22.8%</td>
<td>8.3%</td>
<td>62.5%</td>
<td>0.02</td>
</tr>
<tr>
<td>Number of Stents</td>
<td>1: 90.6%</td>
<td>2: 62.8%</td>
<td>3+: 62.8%</td>
<td>9.3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Effect of TASC on Procedure Supply Cost and Cost Drivers

<table>
<thead>
<tr>
<th></th>
<th>A: $2,458</th>
<th>B: $3,954</th>
<th>C: $4,554</th>
<th>D: $8,365</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Supply Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Adjunct Use (%)</td>
<td>11.6%</td>
<td>22.8%</td>
<td>8.3%</td>
<td>62.5%</td>
<td>0.02</td>
</tr>
<tr>
<td>Number of Stents</td>
<td>1: 90.6%</td>
<td>2: 62.8%</td>
<td>3+: 62.8%</td>
<td>9.3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Effect of TASC on Procedure Supply Cost and Cost Drivers

<table>
<thead>
<tr>
<th></th>
<th>A: $2,458</th>
<th>B: $3,954</th>
<th>C: $4,554</th>
<th>D: $8,365</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Supply Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Adjunct Use (%)</td>
<td>11.6%</td>
<td>22.8%</td>
<td>8.3%</td>
<td>62.5%</td>
<td>0.02</td>
</tr>
<tr>
<td>Number of Stents</td>
<td>1: 90.6%</td>
<td>2: 62.8%</td>
<td>3+: 62.8%</td>
<td>9.3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Defining High Cost Intervention

High Cost Intervention: Highest quartile of procedure specific supply cost
Was Primary Patency at 1 Year Worse for High Cost Interventions?

\[P = 0.63 \]

SE at 1 year = 10%
SE at 1 year = 5%

Low Cost: 78%
High Cost: 80%

Hospital Based Ambulatory Medicare Reimbursement

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margin $</td>
<td>$1,075</td>
<td>$143</td>
<td>-$1,471</td>
<td>$-5,347</td>
</tr>
</tbody>
</table>

Summary

- Increased supply cost is associated with adjunct device use, number of stents and TASC severity.
- Primary patency at 1 year is similar for high and low cost interventions, despite high cost interventions being associated with more complex lesions.

Conclusions

- TASC classification and lesion complexity drive the cost of endovascular SFA interventions. This should be taken into consideration by reimbursement agencies.
- The introduction of more expensive devices could potentially threaten the financial sustainability of endovascular SFA treatment.