Value of DEBs to Treat Renal Artery Lesions, Recurrent Lesions and ISR

Fabrizio Fanelli MD, EBIR
Vascular and Interventional Radiology Unit
Department of Radiological Sciences
"Sapienza" - University of Rome

Disclosures

- Consultant / Speaker / Proctor / Advisory Board
 - Abbott
 - Bayer-Medrad
 - Bard
 - Boston Scientific
 - Cook
 - Cordis
 - Ev 3-Covidien
 - Medtronic
 - Spectranetics
 - TriReme Medical
 - Volcano
 - W.L. Gore & Associates

Background

- Renal artery stenosis is a frequent pathology that can be correlated with hypertension
- In recent years renal stenting has become less popular due to little benefit when compared with medical therapy
- In-stent restenosis occurred in 15-25%
- FMD is still considered a complex pathology to manage

Study

To evaluate the role of DCB in pathologies compromising the lumen of the renal arteries:
- In Stent Restenosis – ISR
- Fibro Muscular Disparlasis – FMD

Study

To evaluate the role of DCB in pathologies compromising the lumen of the renal arteries:
- In Stent Restenosis – ISR
- Fibro Muscular Disparlasis – FMD

No dedicated DCBs are available for renal artery application
"off-label" use of commercially available 0.035" In.PACT Admiral DCB
- Pre-evaluation: USCD + DSA (stenosis ≥70%)
- Pre-dilatation: ISR and FMD (1 mm undersized balloon)
- In.Pact Admiral DCB (Medtronic)
- Medical therapy post-procedure: Clopidogrel 4 weeks, Aspirin indefinitely
- F.U. 1 – 6 – 12 – yearly clinical evaluation + USCD

Patients Population: FMD

<table>
<thead>
<tr>
<th>Pt</th>
<th>Age</th>
<th>Type of Lesions</th>
<th>DCB Ø (mm)</th>
<th>Inflat. Time (s)</th>
<th>Pre Dil ± Yes/No</th>
<th>F.U. ± Yes/No</th>
<th>Medical Therapy</th>
<th>Pressure pre</th>
<th>Pressure Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>PTA/Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>Yes</td>
<td>36</td>
<td>130/75</td>
<td>120/79</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>De novo Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>150/80</td>
<td>120/65</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>PTA/Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>No</td>
<td>18</td>
<td>120/70</td>
<td>120/79</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>De novo Inpact Admiral</td>
<td>5</td>
<td>60</td>
<td>Yes</td>
<td>No</td>
<td>18</td>
<td>150/80</td>
<td>130/79</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>PTA/Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>12</td>
<td>1 drug</td>
<td>160/80</td>
<td>140/65</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>Repeated PTA/Inpact Admiral</td>
<td>5</td>
<td>60</td>
<td>Yes</td>
<td>12</td>
<td>No</td>
<td>150/80</td>
<td>130/75</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>PTA/Inpact Admiral</td>
<td>5</td>
<td>60</td>
<td>Yes</td>
<td>9</td>
<td>1 drug</td>
<td>160/80</td>
<td>140/65</td>
</tr>
</tbody>
</table>

Patients Population: ISR

<table>
<thead>
<tr>
<th>Pt</th>
<th>Age</th>
<th>ISR (mos)</th>
<th>DCB Ø (mm)</th>
<th>Inflat. Time (s)</th>
<th>Pre Dil ± Yes/No</th>
<th>F.U. ± Yes/No</th>
<th>Medical Therapy</th>
<th>Pressure pre</th>
<th>Pressure Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67</td>
<td>14</td>
<td>Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>24</td>
<td>1 drug</td>
<td>150/85</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>39</td>
<td>Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>24</td>
<td>No</td>
<td>145/70</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>31</td>
<td>Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>24</td>
<td>No</td>
<td>160/85</td>
</tr>
<tr>
<td>4</td>
<td>51</td>
<td>26</td>
<td>Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>18</td>
<td>No</td>
<td>125/70</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>17</td>
<td>Inpact Admiral</td>
<td>7</td>
<td>60</td>
<td>No</td>
<td>12</td>
<td>No</td>
<td>150/85</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>15</td>
<td>Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>No</td>
<td>12</td>
<td>No</td>
<td>135/80</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>41</td>
<td>Inpact Admiral</td>
<td>6</td>
<td>60</td>
<td>Yes</td>
<td>12</td>
<td>1 drug</td>
<td>160/85</td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>32</td>
<td>Inpact Admiral</td>
<td>7</td>
<td>60</td>
<td>Yes</td>
<td>9</td>
<td>1 drug</td>
<td>150/85</td>
</tr>
<tr>
<td>9</td>
<td>58</td>
<td>24</td>
<td>Inpact Admiral</td>
<td>7</td>
<td>60</td>
<td>No</td>
<td>8</td>
<td>No</td>
<td>160/80</td>
</tr>
</tbody>
</table>

Results

- Technical success: 100%
- Mean F.U.: 22.5 ± 1.3 mos (6 – 39 mos)
- No restenosis
- No recurrence of symptoms
- No further treatments
- USCD: patent renal artery in all patients (resistive index 0.8)
- Medication: 14/16 pts. (87.5%) reduction of medical therapy
- Reduction of BP (Δ 13.75 mmHg Sist. - 8.12 mmHg Diast.) in all patients

F.F., Female, 30y
Hypertension (BP 175/100 mmHg) not responding to medical therapy
Nephrectomy Lt kidney
FMD Rt kidney
June '99 USCD: multiple severe stenoses Rt. RA (1.3 mt/sec.)

BP: 175/100 mmHg

Nov. '99 PTA (BP 170/95 mmHg)
Feb. '00 PTA
Pregnant
Nov '02: Stent
Pregnant
Nov '07: PTA + Restenting
Jan '09: Cutting Balloon
Sept '09: DCB (BP 170/90 mmHg)
BP always under control with medical therapy
Conclusions

- DCB are nowadays considered a valid tool to increase the patency rate in the peripheral vessels
- DCB improves outcome in renal artery pathologies
- Their activity is more important in patients with FMD
- For these reasons they can become, in a near future, the first line therapy
- Further studies are necessary to confirm these data
- Study limitation includes no evaluation of the glomerular filtration
- The use of dedicated devices can increase results avoiding some technical difficulties

BP: 140/80 mmHg – w/o medication

fabrizio.fanelli@uniroma1.it