The Basics of Echocardiography for PE
What the Vascular Specialist Should Know, and Is an Emergent Echo Necessary

David M. Dudzinski MD, FAHA, FACC
Tuesday, November 17, 2015

Disclosures

- No relevant financial relationships

Transthoracic Echocardiography (TTE) Review

- **Key TTE views to focus on right heart:**
 - Parasternal long axis (RV inflow and RV outflow/PA)
 - Parasternal short axis (multiple RV levels, PA)
 - Apical four chamber (RA/RV in multiple planes)
 - Subcostal view (IVC ± SVC, RA/RV, PA)

Questions for TTE in Acute PE

- **“Is there a PE?”**
 - Diagnostic
 - Overall sensitivity ~50-70%
 - PE diagnosis based on RVH, RVD, TRV
 - Need > 25% PA obstruction to manifest an echo correlate
 - difficult to exclude PE by TTE

- **“How severe is this PE?”**
 - Prognostic

Questions for TTE in Acute PE

- **“Is there a PE?”**
 - Diagnostic

- **“How severe is this PE?”**
 - Prognostic
Right Heart Thrombi ("thrombus-in-transit") in ICOPER

- Duration of symptoms (2.2 v. 4.3 days)
- RVHK (64% v. 40%)
- p = 0.036

N=1,113 PE with TTE
n=42 with RHTh (4.0%)

On TTE, emboli can be visualized in:
- IVC, RA, RV, PA (proximal)

Echo Contribution to Etiology

- Venous thrombi
 - Mimic casts of deep veins
 - More homogenous echotexture
 - Smooth
- Consider alternate etiology if
 - Irregular shape or echotexture
 - Densely laminated
 - ? Attaching point

Non-Venous Thrombi: Echo DDx

- Non-venous thrombi
 - Liquefied thrombus
 - Tumors
 - Myxoma (LA>RA, septum, pendunculated)
 - PFE (valves, usually AV)
 - Hematologic
 - Sarcomas
 - Invasive from
 - Lung (hemangiosarcoma)
 - IVC (RCC)
 - Infective endocarditis
 - Valve vegetations

Questions for TTE in Acute PE

"Is there a PE?"
- Diagnostic
 - Overall sensitivity ~50-70%
 - difficult to exclude by TTE
 - Look for thrombus-in-transit
 - Non-venous emboli PE?
- Prognostic
 - Echocardiography in the Management of Pulmonary Embolism
 - JASE 2011;24:229.
 - Annals 2002;136:691.
 - AJM 2001;110:528.

"How severe is this PE?"
- Diagnostic
 - Overall sensitivity ~50-70%
 - difficult to exclude by TTE
 - Look for thrombus-in-transit
 - Non-venous emboli PE?
- Prognostic
Risk Stratification

- Estimated prevalence (%)
 - Massive (High) 25%
 - Submassive (Int-high) 10%
 - Lower (Int-low) 5%
 - OHCA 2%

We never know the patient’s "baseline" - generally left with absolute, population based standards

Questions for TTE in Acute PE

"Is there a PE?"
- Diagnostic
 - Overall sensitivity ~50-70% - difficult to exclude by echo
 - Look for thrombus-in-transit
 - Non-venous emboli PE?

"How severe is this PE?"
- Prognostic
 - RV/chamber sizes - RVEDD, RV/LV
 - RV function (HK)
 - Septal geometry - Quantitative measures
 - Hemodynamics - TRV, PASP

We never know the patient’s "baseline" - generally left with absolute, population based standards

Other Size Measures

- IVC: ? Hemodynamics
- RV/RA: dilatation
- PA: ? chronicity

RV Function

- No standard RV EF
 - RV FAC
 - 3D EF

"Non-volumetric" measures
- Global
 - MPI
 - RV sPAP
- Regional
 - S'
 - TAPSE
 - Acceleration time
 - Strain

We never know the patient’s "baseline" - generally left with absolute, population based standards

RV Function = research applications, time-consuming & operator dependent, & generally not validated across populations or in PE

- No standard RV EF
 - RV FAC
 - 3D EF

"Non-volumetric" measures
- Global
 - MPI
 - RV sPAP
- Regional
 - S'
 - TAPSE
 - Acceleration time
 - Strain

Default to 2D analysis of RV
Prognostic Value of Echocardiography in Normotensive Patients With Acute Pulmonary Embolism

Tricuspid Annular Plane Systolic Excursion

- Measure of longitudinal RV excursion; assumes
 - Local ≈ global function
 - Base reflective of free wall and apex (specifically may not be true in disease)
- ↓ in PE, PAH, and CTEPH
- Operator/image dependent but has prognostic info

TAPSE in Normotensive PE Patients

- 411 PE pts
 - Age 64 ± 18
 - 58% submass, 41% low risk
 - 2% lytic
- Time to TTE
 - Admit: 193
 - <24h: 159
 - <72h: 59
- TAPSE ≤ 15
 - 20% PPV
 - 99% NPV

CT v. TTE for Submassive PE

- n=298, age 59 ± 17, 49% ♀, 90% Caucasian
- 104 had CT and TTE; 14 had composite outcome
- (+) RVS on CT
 - 5 Day Event
 - Subtotal
- (-) RVS on CT
 - 5 Day Event
 - Subtotal

Right Ventricular Systolic Pressure

TR as a function of RVSP
Summary: Roles of TTE in Acute PE

- Size and nature of thrombus (DDx)
- Location
 - Point of origin (may impact etiology)
 - Attachments (catheters, native anatomy)
 - Interference with RV function, tricuspid valve anatomy
- Hemodynamic consequences
 - RV dysfunction ± ischemia: dilatation, WMA, TAPSE, TDI/S', ? strain
 - Right sided pressures: above and TRV
 - Right sided overload: RVD, RAD, IVCD, HVD
 - Septal geometry: diastolic and systolic septal flattening
- DDx and Chronicity of Pulmonary HTN / RV Pathology
 - RVMI, r/o occult, congenital, shunt, LV disease
 - Other causes of dyspnea: LVSD, valvulopathy, effusions
 - Chronicity (RVH, ? PA size)

Using Echo in PE

- Assess contributing comorbidities
- Plan, guide interventions
- Any evidence of RV dysfunction
 - Exam
 - EKG
 - Troponin, NPs
- "High" clot burden (DVT)
- "Moderate" clot burden
- Neurologic symptoms
- ?, as TTE defines submassive v. lower risk
 - Predict low risk trajectory
 - TEE rarer, spared PFO during interventions

Vascular Specialists Should Know:

- TTE provides key information in describing thromboemboli and identifying RV dysfunction
 - Differential diagnosis
 - Prognosis and risk of decompensation
 - Therapeutic decisions and procedural guidance
 - Followup
- Need & timing based on clinical scenario, trajectory
- Caveats of TTE in PE: expertise required, lack of prior baseline, reference ranges, chronicity v. acuity

The Basics of Echocardiography for PE
What the Vascular Specialist Should Know, and Is an Emergent Echo Necessary

David M. Dudzinski MD, FAHA, FACC
dmd@post.harvard.edu
@criticalecho