Non-Thrombotic May Thurner Syndrome: Defining Pathology Mandating Treatment from Normal Anatomy

Brian G. DeRubertis, M.D., F.A.C.S.
Associate Professor of Surgery
Director, Gonda Ambulatory Procedure Unit
UCLA Division of Vascular Surgery, Los Angeles, California

Disclosures

Serve as a consultant, proctor, or speaker for the following companies:
- Cook Medical
- Abbott Vascular
- Boston Scientific
- Medtronic

May-Thurner Syndrome: Pathology Mandating Treatment

The Cause of the Predominantly Sinistral Occurrence of Thrombosis of the Pelvic Veins
May R, Thurner J.
ANGIOLOGY October 1957 8: 419-427

Acute Iliofemoral DVT
Unilateral Leg Swelling

24 yo healthy woman
• Acute onset leg swelling
• Dx'd with acute L DVT

Treatment
- PMT with Trellis/TPA
- Stenting of L CIV
- Postoperative anticoag

Thrombotic May Thurner Syndrome with Acute DVT:
mandates treatment with lysis / thrombectomy and LCIV stenting

33 yo healthy woman
• 5-7 yr h/o mild left leg swelling and fatigue
• Primary complaint is that pants fit asymmetrically

Treatment
- Compression stockings
- L CIV stenting ??

Non-thrombotic May Thurner Syndrome w/ leg swelling:
mandates only counseling, compression therapy, and judicious application of endovascular stenting

Unilateral Left Leg Swelling: Evaluation & Management for Suspected May-Thurners

Key Components:

STEP 1: Patient Education & Compression Therapy
STEP 2: Diagnostic Imaging (Contrast Venography)
STEP 3: IVUS-guided Iliac Vein Stenting
Unilateral Left Leg Swelling: Evaluation & Management for Suspected May-Thurners

STEP 1: Patient Education & Compression Therapy
- Risk v. Benefit of venous stenting
- Long-term durability concerns
- Lack of available stents designed for venous system (in U.S.)
- Instruction on proper use of compression therapy
- Reassurance of patient and discussion of warning signs of DVT

STEP 2: Diagnostic Imaging – MRV & Venography
- **MRV and CT Venography**
 - (Overly) sensitive test
 - Lack of physiologic information
 - Limited utility in guiding management
 - Not used routinely
- **Contrast Venography**
 - Physiologically relevant data
 - Venous flow patterns, collaterals
 - Outpatient angiography suite
 - Findings + symptoms guide intervention

Venogram Findings
1) "Pancaking" / flattening
2) Stagnation of flow
3) Contra-lateral cross-filling
4) Preferential collateral flow
5) Stenosis
Unilateral Left Leg Swelling: Evaluation & Management for Suspected May-Thurners

May-Thurner Syndrome: UCLA Experience

60 Patients

Group I
May-Thurner Syndrome with DVT (n=31)
31 pts: thrombectomy / lysis, angioplasty, and stenting
100% technical success

Group II
May-Thurner Syndrome without DVT (n=29)
14 pts: managed conservatively
15 pts: angioplasty and stenting
100% technical success

Primary Patency of Iliac Venous Stents

Secondary Patency of Iliac Venous Stents

May-Thurner Syndrome: UCLA Experience

24-month Primary and Secondary Patency

<table>
<thead>
<tr>
<th></th>
<th>Thrombotic (n=31)</th>
<th>Non-Thrombotic MT (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Patency</td>
<td>94.1%</td>
<td>100%</td>
</tr>
<tr>
<td>Secondary Patency</td>
<td>97.1%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- One early occlusion in thrombotic May-Thurner group
- One late restenosis in the Non-thrombotic group at 46 mo
- Two access site hematomas (no intervention required)

Unilateral Left Leg Swelling: Evaluation & Management for Suspected May-Thurners

STEP 3: IVUS-Guided Iliac Vein Stenting

Intravascular Ultrasound
- Precise location of compression
- Guides stent sizing and placement
- Objective quantification of luminal improvement

Iliac Stenting
- Wallstent diameter 14-20mm
- Extension into IVC
- Oversize proximally (in EIV)

May-Thurner Syndrome: UCLA Experience

Primary Patency of Iliac Venous Stents

Secondary Patency of Iliac Venous Stents
May-Thurner Syndrome: UCLA Experience

Group I

May-Thurner Syndrome with DVT (n=31)
- 31 pts: thrombectomy / lysis, angioplasty, and stenting
- 100% technical success

Group II

May-Thurner Syndrome without DVT (n=29)
- 14 pts: managed conservatively
- 15 pts: angioplasty and stenting
- 100% technical success

Initial Presentation of Non-Thrombotic May-Thurner Patients

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Conservatively Managed Patients (n=14)</th>
<th>Stented Patients (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>86%</td>
<td>80%</td>
</tr>
<tr>
<td>Edema (any)</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Mild Edema</td>
<td>79%</td>
<td>73%</td>
</tr>
<tr>
<td>Severe Edema</td>
<td>21%</td>
<td>27%</td>
</tr>
<tr>
<td>CEAP 3</td>
<td>86%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Results of Treatment for Non-Thrombotic May-Thurner Patients

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Conservatively Managed Patients (n=14)</th>
<th>Stented Patients (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution of Pain</td>
<td>53%</td>
<td>71%</td>
</tr>
<tr>
<td>Complete Resolution of Edema</td>
<td>0%</td>
<td>26%</td>
</tr>
<tr>
<td>Improvement in Edema</td>
<td>28%</td>
<td>73%</td>
</tr>
<tr>
<td>CEAP Reduced</td>
<td>21%</td>
<td>73%</td>
</tr>
</tbody>
</table>

Conclusion

Approach: Selective Intervention Based on Symptom Severity and Imaging Findings is justified in non-thrombotic May-Thurner

Rationale: In these patients:
1. Symptoms are often mild in severity
2. Resolution of pain/fatigue responds to compression alone
3. Reduction in DVT rates has not been shown
4. Long-term (>10-20 yrs) durability of venous stenting is unknown
5. Conservative management does not preclude subsequent intervention for persistent symptoms

Division of Vascular Surgery
University of California, Los Angeles