Role of Inflammation in DVT: Its Relationship with Thrombosis

Thomas W. Wakefield, M. D.
Stanley Professor of Surgery
Section of Vascular Surgery
University of Michigan
Director Samuel and Jean Frankel Cardiovascular Center

National Institutes of Health
(RO1 HL070766, PO1 HL089407, R01 HL095091, T32 HL076123, S10 RR010547, U54 RR024154)
University of Michigan
Upjohn, Genetics Institute, Wyeth, Archemix, Glycomimetics

Disclosures

Nothing To Disclose

Virchow’s Triad (1856)

Circulatory stasis
Hypercoagulability
Endothelial injury

Stewart’s Original Hypothesis
Venous Thrombosis

- Thrombus Forms
- Leukocytes/Platelets Activate
- Coagulation Proceeds on Platelet Surfaces
- Leukocytes/Platelets Layer - Amplification

Selectins

Selectins are glycoproteins found primarily on endothelial cells, leukocytes and platelets.
They are involved in trafficking of leukocytes in acute and chronic inflammatory processes, including:
- Post-ischemic inflammation in muscle, kidney and heart
- Scar formation
- Atherosclerosis
- Glomerulonephritis
- Lupus Erythematosus
- DVT

Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets

P-selectin
- Earliest Elevated Glycoprotein Expressed by Activated Platelets and Endothelial Cells
- Mediates Adhesion of Leukocytes, Platelets and Cancer Cells to Endothelial Cells
- P-selectin:PSGL-1 Triggers Release of Procoagulant Microparticles - Fibrin Formation and Thrombus Growth
- Increases on Monocytes Expression of Tissue Factor, Phosphatidylserine Exposure Surface-dependent Thrombin Generation

E-selectin
- Enhances endotoxin induced tissue factor (TF) mediated coagulation in humans carrying the S128R E-selectin allele
- Patients homozygous for the S128R E-selectin allele have an increased risk for VTE recurrence
- E-selectin raises the affinity and avidity of 2 (CD18) integrins which support neutrophil trafficking to sites of acute inflammation and recruit platelets and red blood cells (Chase SD et al, Ann Biomed Eng 2012)

Delta-CT (^CT) Mouse
- Gene Deletions Exons 13 and 14
- P-selectin Cytoplasmic Tail
- Homozygous Mice Have Normal Phenotype
- Express Circulating Plasma P-selectin 3-4 Fold Increase vs. Wild Type Mice
- Hypercoagulable from Microparticles

Thrombus Mass Day 2

- ^CT vs. WT, PKO, EPKO, P<.01
- 50% vs. 16%
Neutrophil Extracellular Traps

Endothelium
- Co-culture of ECs and Neutrophils promote NET formation; in turn, NETs induce EC death.
- NETs bind platelets and support their aggregation; Histone (H4) activates platelets through TLR2 and TLR4-dependent mechanisms, which then release polyphosphates which augment coagulation enhancing Factor XI and prothrombin activation complex.

Platelets
- NETs bind platelets and support their aggregation; Histone (H4) activates platelets through TLR2 and TLR4-dependent mechanisms, which then release polyphosphates which augment coagulation enhancing Factor XI and prothrombin activation complex.

Red Blood Cells
- RBCs avidly bind to NETs and RBCs may promote coagulation by exposing PS and altering blood viscosity.

Coagulation
- NETs stimulate fibrin formation and deposition in-vitro, and fibrin co-localizes with NETs in thrombi.
- NETs provide a scaffold for thrombi resistant to tPA-induced thrombolysis.

P-selectin Inhibition Therapeutically Promotes Thrombus Resolution and Prevents Vein Wall Fibrosis Better than Enoxaparin and an Inhibitor to von Willebrand Factor

Hypothesis
- By limiting thrombus amplification either by inflammatory or platelet inhibition with P-selectin or VWF inhibition, thrombosis will be treated better than standard LMWH anticoagulation.

Baboon Model and Experimental Design

Netosis induced by thrombin-activated platelets rosetting with neutrophils is inhibited by anti-P selectin aptamer, and antibody to PSGL-1

NET formation from stimulated neutrophils in ^CT mice is significantly enhanced, suggesting that NET formation may contribute to increased thrombosis in these mice.

References
Baboon Groups

n=3 Control

Treatments
- n=3 Anti-P-selectin Treatment (ARC5462)
 - 2mg/kg IV on day 2. Then 1mg/kg Sub Q on day 3, followed by 1mg/kg Sub Q bid until euthanasia on day 21 after thrombosis.

- n=3 LMWH Treatment
 - 1.5mg/kg SQ once on day 2, then 1.5mg/kg Sub Q once daily until euthanasia on day 21 after thrombosis.

- n=3 Anti-VWF Treatment (ARC15105)
 - Started on Day 2. 250µg/kg IV, on day 2. Repeat single dose of 250µg/kg IV on Days 6, 10, and 14 after testing platelet aggregates with PFA-100 test. Euthanasia occurred on day 21 after thrombosis.

Baboon Groups (Prophylactic Groups)

n=4 Anti-P-selectin Prophylactic (ARC5692)

Begun the day of surgery 3mg/kg (2mg/kg IV and 1mg/kg Sub Q) and continued 1mg/kg Sub Q for 6 days; Euthanized on day 21 after thrombosis.

n=3 Anti-VWF-Prophylactic (ARC15105)

Dosed pre-surgery. 250µg/kg IV, once. Dose repeated on day 2 (after testing platelet aggregates with PFA-100 test) for 6 days; Euthanized on day 21 after thrombosis.

Magnetic Resonance Venography (Including Prophylactic Groups)

Ascending Phlebography

- **CTR**
 - B0: 80%
 - B2: 50%
 - B6: 13%
 - B14: 0%
- **LMWH-Tx group**
 - B0: 80%
 - B2: 50%
 - B6: 13%
 - B14: 0%
- **Anti-VWF-Aptamer-Tx group**
 - B0: 80%
 - B2: 50%
 - B6: 13%
 - B14: 0%
- **Anti-Psel-Aptamer-Tx group**
 - B0: 80%
 - B2: 50%
 - B6: 13%
 - B14: 0%

Duplex ultrasound analysis: iliac valve function.

- **CTR group**
 - Valve competent
 - Valve incompetent
- **LMWH-Tx group**
 - Valve competent
 - Valve incompetent
- **Anti-VWF-Aptamer-Tx group**
 - Valve competent
 - Valve incompetent
- **Anti-Psel-Aptamer-Tx group**
 - Valve competent
 - Valve incompetent

Copyright © American Heart Association, Inc. All rights reserved.
Coagulation Tests (Bleeding risk)

E-Selectin Inhibitor GMI-1271

- E-selectin antagonist, GMI-1271
- Small molecule antagonist that specifically inhibits E-selectin and mimics the bioactive conformation of the sialyl-Lex carbohydrate ligand
- Presently, the compound is being evaluated for use in blood cancers and other cancers that are also associated with elevated risk of metastasis

Myers DD et al, unpublished data