Acute And Chronic IVC Occlusion: Why It Occurs And Options For Treatment

David L. Gillespie MD, RVT, FACS
Chief, Division Vascular and Endovascular Surgery
Heart and Vascular Center
Southcoast Health Systems
Fall River, MA

Venous outflow obstruction

- Deep venous thrombosis
 - Acute
 - Chronic
- Non-thrombotic obstructions
 - May Thurner syndrome
 - Venous webs

Venous outflow obstruction

- Venous thrombosis
- May involve
 - Inferior vena cava
 - Iliac veins
 - Common iliac vein
 - External iliac vein
- Usually caused by or assoc/w
 - Hypercoagulable state
 - Protein C, S deficiency
 - AT III deficiency
 - IVC filter thrombosis

- Thrombosed iliac veins treated by anticoagulation alone completely recanalize, but the iliac vein is the common outflow tract of the lower limb.
- Chronic obstruction results in severe symptoms because of poor compensation by collateral formation.
- Only 20% to 30% of thrombosed iliac veins treated by anticoagulation alone completely recanalize.
Venous outflow obstruction

Non-Thrombotic

- compression of left common iliac vein by right common iliac artery
 - secondary band or web formation
- classically found in younger females
- not uncommon in males
- elderly patients
- may involve the right limb
- more common cause of venous obstruction than previously thought.

Signs and Symptoms

- vary greatly
- moderate swelling
- pain
- stasis ulceration
- main emphasis has been on controlling reflux.
- symptoms not always improved by
 - compression stockings
 - surgery to ablate varicose veins

Obstructive lesions of the inferior vena cava:
Clinical features and endovenous treatment

Raju et al, J Vasc Surg 2006

Venous outflow obstruction

Signs and Symptoms

- Different than venous reflux.
- Chronic venous ulceration
 - exercise-induced "tense" pain
 - requires several minutes of rest and leg elevation to achieve relief.
 - quality of life and moderate disability
- Limb swelling
 - unilateral
 - bilateral
- Previous estimations that obstruction is a major contributor in only 10% to 20%
 - Probably much more common contributor to venous disease

Laboratory Evaluation

- testing for outflow obstruction often omitted
 - reflux emphasized
 - lack of practical treatment alternatives
- What is a hemodynamically significant venous obstruction?
 - plethysmography
 - invasive
 - do not define the level of obstruction
 - hand/foot pressure differential
 - invasive
 - do not define the level of obstruction

Criteria for defining significant central vein stenosis with duplex ultrasound

- Pts with swelling with or without pain
- All patients had DU prior to phlebography
 - two views, pressure measurements, and IVUS
 - pressure gradient of 3 mm Hg across stenosis in defined >50% diameter reduction
- The best criterion by DU to detect a >50% stenosis was a poststenotic peak vein velocity ratio of 2.3
- The overall agreement of DU alone was 90% of phlebography >95% and when combined 100%.
Morphologic Assessment of Venous Stenoses

Single plane Venography

- To date diagnosis and treatment most often based on morphologic findings
- Single-plane transfemoral venography
 - standard investigation
 - definite obstruction
 - development of collateral vessels
- findings often subtle and only suggestive of an underlying obstruction
 - widening of the iliac vein
 - “pseudolocking”
 - “thinning” of the contrast dye
 - partial intraluminal defect [septum]
 - minimal filling of transpelvic collaterals

Morphologic Assessment of Venous Stenoses

Intravascular Ultrasonography (IVUS)

- superior to single-plane venography
- detection of morphology
- degree of stenosis
 - venography underestimated stenoses by 30%
 - venography considered “normal” in one fourth of limbs despite the fact that IVUS showed more than 50% of obstruction

Morphologic Assessment of Venous Stenoses

Intravascular Ultrasonography (IVUS)

- shows intraluminal details
 - trabeculations and webs
 - may be hidden by the contrast dye
- external compression directly visualized
 - wall thickness
 - neointimal hyperplasia
- the best available method for diagnosing clinically significant chronic iliac vein obstruction.

Venous outflow obstruction

Surgical reconstruction

- deep venous obstruction
 - responsible for 10% of CVI pts
- first successful reconstruction
 - reported more than 50 years ago
- open surgical treatment
 - Despite years of performing
 - Results less than satisfactory

Palma procedure

right-to-left femorofemoral crossover vein graft
Venous outflow obstruction
Iliocaval angioplasty and stenting

- alternative treatment for chronic iliofemoral venous obstruction
- less invasive
- relatively safer alternative to open surgery
- can be offered to a larger group of patients
- initial "method of choice"
- In case of stent failure
 - does not preclude subsequent surgery

Venous balloon angioplasty and stenting

- Ipsilateral cannulation of the femoral vein.
- Low thigh access is necessary to allow stent deployment up to and below the inguinal ligament without being impeded by the sheath.

- Ultrasound guidance
 - to avoid inadvertent arterial puncture,
 - femoral vein location variable
 - posterolateral or posteromedial in reference to the femoral artery
Venous balloon angioplasty and stenting

- IVUS used to assess
- Pre and post stent placement
- Apposition of stent to vein wall

Summary

- Relief of acute or chronic venous outflow obstruction is feasible by either endovascular or open techniques
- Iliofemoral venous stenting should be primary technique
- Excellent results in patients with venous claudication
 - Especially with secondary patency rates
- Suggest early referral
 - Should be performed by experienced individuals
 - Requires advanced endovascular skills
 - Need to have continued patient follow up
 - Looking for instent restenosis or thrombosis and need for reintervention