Ongoing Trials of Drug Delivery Techniques and Improved Stents for BTK Arteries. The Future is Bright

A. Schmidt, MD and D. Scheinert, MD
Department for Interventional Angiology
University Hospital Leipzig
Germany

Potential conflicts of interest

Speaker’s name: Andrej Schmidt
✓ I have the following potential conflicts of interest to report:
Consulting:
Medtronic, Abbott, Boston Scientific, Cook, Cordis, C.R.Bard, Intactvascular, ReFlow Medical, Spectranetics, Upstream Peripheral

Drug-Coated Balloon BTK

Trials which failed to show a benefit / superiority for DCBs BTK
- In.Pact DEEP multicentric, randomized, controlled trial
 ✓ In.Pact Amphilion PTX-eluting balloon vs.
 ✓ Uncoated Amphilion Deep
 Zeller et al. JACC 2014

- Biolux-P-II multicentric, randomized, controlled trial
 ✓ Passeo-18 LUX PTX-eluting balloon vs.
 ✓ Uncoated Passeo-18
 Zeller et al. JACC Intervent 2015

Ongoing: Lutonix BTK Clinical Trial

- 320 patients at 55 global sites,
- Rutherford 4 and 5; randomized 2:1
- Clinical FU and Duplex up to 36 months
- Angiography in a subset of patients at 12 months

- Primary endpoint:
 ✓ Safety at 30 days (Major amputation / major re-intervention)
 ✓ Limb salvage & primary patency at 12 months

Status of Lutonix 014 BTK IDE Study

- 49 Active Sites
- 255 Enrolled Subjects
 - 179 have completed 6 month follow-up
 - 121 have completed 12 month follow-up

- The Safety Data Monitoring Committee has met 7 times (quarterly) and deemed the study safe to continue.

German single center experience with Lutonix® DCB in BTK
presented @ LINC 2015

Sabine Steiner
Division of Interventional Angiology
University Hospital Leipzig, Germany
Study design

- Retrospective cohort study of patients undergoing BTK interventions using Lutonix® drug coated balloons
- 248 patients treated, 40 lost to follow-up (16%)
- 220 limbs treated in 208 patients
- Clinical follow up:
 - Rate of death
 - BTK re-interventions and target lesion revascularization
 - Minor and major amputations

Interventional Characteristics

<table>
<thead>
<tr>
<th></th>
<th>N=220</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of devices used, mean± std</td>
<td>2.3 ± 1.1</td>
</tr>
<tr>
<td>Cumulative length of devices (mm), mean± std</td>
<td>242 ± 122</td>
</tr>
<tr>
<td>Treatment of inflow lesions, %</td>
<td>48</td>
</tr>
<tr>
<td>Femoropopliteal, %</td>
<td>29</td>
</tr>
<tr>
<td>Popliteal, %</td>
<td>19</td>
</tr>
<tr>
<td>Rutherford stage before intervention, %</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>38.7</td>
</tr>
<tr>
<td>Stage 4</td>
<td>12.3</td>
</tr>
<tr>
<td>Stage 5</td>
<td>46.4</td>
</tr>
<tr>
<td>Stage 6</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Follow Up Lutonix BTK Registry

- Freedom from TLR
 - At 6 months 89 %
 - At 12 months 77 %
- 9 Major amputations
- All major amputations were performed in CLI patients (6.6% of the CLI cohort)

Different Way of Local Drug-Delivery BTK

The Bullfrog® Micro-Infusion Device
(Mercator MedSystems)

- Revascularization injures the deep layers of the artery
 - Inflammation
 - Progenitor cell differentiation
 - Myofibroblast proliferation
- Injection of dexamethasone / glucose into the deep layers

Bullfrog Adventitial Infusion

<table>
<thead>
<tr>
<th>Pre-Revascularization</th>
<th>Post-Revascularization</th>
<th>Post-Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% contrast, 80% drug</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bullfrog Study Program BTK

LIMBO (n=100)
First double blinded RCT BTK
- 50 PTA with Bullfrog vehicle delivery
- 50 PTA with Bullfrog Dexa.- delivery

DANCE (n=300)
- PTA
- Atherectomy
- Bullfrog Dexa.- injection
How to Improve Patency BTK

- What has been proven in randomized trials to lower the restenosis rate in BTK-arteries so far?
 - Drug-eluting stents

Drug-Eluting Bioabsorbable Stents

Everolimus eluting bioresorbable vascular scaffold (Absorb BVS)

Absorb BVS: BTK Pilot-Study

- Single center prospective registry
 - 20 patients, 25 limbs, 23 scaffolds
 - Mean lesion length 20.2 mm
 - Procedural success 100 %

1 year results:
- Clinical improvement 88 %
- Limb salvage 100 %
- Primary patency 94.4 %

Need for longer DES for Diffuse BTK-Disease

- Movement-segment
- Missmach of diameters

Self-expanding long drug-eluting stent preferred

Zilver-PTX 5.0/100 mm
(Not available, not approved for BTK in the US)

Summary

- There is still an unmet need for improved durability in the BTK area.
- Longer DES / drug-eluting scaffold technology might be a solution.
- Drug-delivery via balloon-based solutions may still be the most realistic approach.