Accurate Placement Of Thoracic Endografts Parallel To The Aortic Arch By Controlling Device Angulation Improves Outcomes: Techniques For Doing

Ali Azizzadeh, MD, FACS
Professor and Chief
Division of Vascular and Endovascular Surgery
Department of Cardiothoracic and Vascular Surgery
The University of Texas Medical School at Houston
Memorial Hermann Heart & Vascular Institute

Disclosures
- Consultant
 - WL Gore
 - Medtronic

History of TEVAR
- Early 1950's - First Open Repair
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010
- 2020

History of TEVAR
- Early 1950's - First Open Repair
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010
- 2020

TEVAR Applications
Significant Variation in Age, Aortic Diameter, & Blood Flow Velocities

Pathology
- Aneurysm
- PAU
- IMH
- Dissection
- Trauma
- ABF/AEF
- Coarctation

Average Age
- 60’s-70’s
- 60’s-70’s
- 50’s-60’s
- 50’s-60’s
- 20’s-30’s
- 60’s-70’s
- 10’s-30’s

First Generation Devices

- **Gore TAG 2005**
- **Medtronic Talent 2008**
- **Cook TX2 2008**

Failure Modes of Thoracic Endografts

- Delivery
- Deployment
- Conformability
- Collapse
- Material Failure
- "Equal-opportunity hazard"

Malapposition

- Bird beaking

Graft Compression

Current US Devices

- **Gore CTAG 2011**
- **Medtronic Valiant 2012**
- **Cook TX2 2009**
- **Bolton Relay 2012**
Increasing Complexity of Pathology

Unmet Needs?
- Delivery
- Trackability
- Deployment
- Control
- Two-stage
- Post-Deployment
 Modification
- Fine Tune

Next Generation Devices
- Cook Alpha
- Medtronic Valiant Evo
- Gore CTAG with Active Control

Evolution of Zenith Alpha

<table>
<thead>
<tr>
<th>Zenith TX4 Endovascular Graft</th>
<th>Zenith Alpha/Thoracic Endovascular Graft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel stents</td>
<td>Nitinol stents</td>
</tr>
<tr>
<td>Standard polyester</td>
<td>Thoracic, more tightly woven polyester</td>
</tr>
<tr>
<td>Covered proximal stent</td>
<td>Bare, rounded proximal stent</td>
</tr>
<tr>
<td>20-24 Fr introduction system</td>
<td>16-20 Fr introduction system</td>
</tr>
<tr>
<td>12-42 mm graft diameter</td>
<td>18-46 mm graft diameter</td>
</tr>
<tr>
<td>MR conditional</td>
<td>MR conditional (improved MR compatibility)</td>
</tr>
</tbody>
</table>

Medtronic VALIANT EVO*

- 4 Fr reduction in profile facilitates vascular access
 - 20 x 30 (8 mm)
 - 20 x 50 (12.7 mm)
- Proximal closed web configuration with tip capture is tailored for specific anatomies and pathologies
- Expanded size matrix offers anatomical customization
 - Longer 225 mm length
 - Smaller 20 mm diameter
 - Increased 5 & 6 mm tapering
- Very flexible graft conforms to high angulation
- More ergonomic delivery system for controlled deployment

Staged Deployment
- Gore CTAG with Active Control

* Technology under development

All products are under development and not available or approved for sale in any market.
Gore CTAG with Active Control Post Deployment Modification

Future of TEVAR
- Ease of delivery
- Controlled deployment
- Post-deployment modification
- Conformable to wide range of anatomy
- Post-implantation surveillance

Thank You

The Houston Aortic Symposium
Frontiers in Cardiovascular Diseases
The Ninth in the Series
Houston, Texas

SAVE THE DATE!
Make your plans to join us in 2016 for the ninth annual symposium!