Value Of 3D Printing To Facilitate And Improve Complex AAA Repairs

Benjamin W. Starnes MD, FACS
The Alexander W. Clowes Endowed Chair in Vascular Surgery
Professor and Chief;
Division of Vascular Surgery
University of Washington
Seattle, WA

Disclosures

AORTICA- Co-founder
Endologix- Ventana Medical Advisory Board
Clinical Trials: Cook Inc., W.L. Gore, Medtronic, Endologix, Bolton
Intellectual Property: UW C4C

How can we be sure the graft fits the patient perfectly?

The Solution: “A Surgical Planning Tool”

• A physical model of the patient’s aorta as a guide to fenestration locations:
 - Reduces physician time in calculating fenestrations
 - Reduces ambiguity of how to align the fenestrations around the frame in the stent-graft
 - Reduces the potential for mistakes in placement of fenestrations
• The patient can have a fenestrated stent-graft in just days instead of weeks

CUSUM – Death Or Major Complication

How can we be sure the graft fits the patient perfectly?

The Solution: “A Surgical Planning Tool”

• A physical model of the patient’s aorta as a guide to fenestration locations:
 - Reduces physician time in calculating fenestrations
 - Reduces ambiguity of how to align the fenestrations around the frame in the stent-graft
 - Reduces the potential for mistakes in placement of fenestrations
• The patient can have a fenestrated stent-graft in just days instead of weeks
Conclusions

• Advances in medical imaging combined with 3-D printing technology allows for true customization of medical devices to fit any patient

• Ultimately, these devices will be printed denovo for each patient within hours

• From Bench-top to Bedside requires an convergence of experience and innovation.