Non-invasive assessment of blood flow and lesion significance from coronary CT scans

Fractional Flow Reserve (FFR_{CT})

Will it work in other arterial beds?

Christopher K. Zarins, MD

Disclosure

Employment and equity interest in HeartFlow, Inc

Fractional Flow Reserve

Defines lesion-specific ischemia

- Measured with pressure wire during coronary angiography
- Pressure gradient during maximal hyperemia (adenosine)

Treatment of Coronary Stenosis

Importance of Assessing Ischemia

- **Angio visual-guided therapy vs best medical**
 - COURAGE, BARI 2D
 - No difference: PCI vs medical
- **FFR-guided therapy vs visual**
 - DEFER, FAME, FAME 2
 - Improved clinical outcome
 - Reduced costs
- **European and US guidelines**
 - FFR-guided therapy: The standard of care
- **However, FFR used in <10% of PCI in USA**

Non-invasive Fractional Flow Reserve (FFR_{CT})

Determines functional significant of coronary lesions

- 3D map of FFR_{CT} derived from coronary CTA

Non-invasive FFR_{CT}

- 3 prospective clinical trials: FFR_{CT} vs FFR
 - 609 patients, 1050 vessels
 - High diagnostic accuracy of FFR_{CT}
- **CE mark Europe 2011**
- **FDA clearance, November 2014**
- **2015 FFR_{CT} introduced into clinical practice**
 - Europe, USA and Japan
Case examples

Case 1
- LAD stenosis
- FFR = 0.62
- LES specific ischemia
- ICA and FFR

Case 2
- RCA stenosis
- FFR = 0.87
- No ischemia
- ICA and FFR

FFR_{CT} from coronary CTA
- Standard CTA acquisition protocol, β-blocker, NTG
- No additional imaging or radiation
- No adenosine

HOW HEARTFLOW WORKS
- Send data
- HeartFlow analysis
- Receive results

FFR_{CT} Analytic Process
- Computational Model based on coronary CTA
 - 3-D quantitative anatomic model from coronary CTA
 - Physiologic models:
 - Myocardial demand
 - Morphometry-based boundary conditions
 - Effect of adenosine on microcirculation
- Blood Flow Solution
 - Blood flow equations solved on supercomputer
- Calculate FFR_{CT}
 - 3D FFR_{CT} map computed
 - FFR_{CT} = 0.72 (can select any point on model)

Clinical decision making

FFR_{CT} RIPCORD Study – decision analysis, n=200
- Initial Decision – CT Angiography only
- Final Decision – Post FFR_{CT}
 - More information needed
 - 44% of patients had decisions altered after physicians incorporated FFR_{CT}
- Change in disease management pathway for 36% of patients
- Change in vessel assigned to PCI for an additional 8% of patients

Curzen, et al, EuroPCR 2015
Treatment Planning

Future applications

- Aorta and peripheral vasculature
- Carotid and cerebral circulation
- Renal artery stenosis
- Mesenteric circulation

Summary

- Computational analysis of blood flow from CTA is a clinical reality
- Non-invasive FFR_{CT} can improved diagnosis of CAD
 - Can differentiate patients with lesion-specific ischemia from those with no functional stenosis
 - Helps physicians make better treatment decisions
- Potential for improved clinical outcomes with reduction in healthcare costs

Thank you