Tips And Tricks To Facilitate Upper Extremity Access For F/BEVAR And Parallel Graft Insertion And How To Avoid Complications
Carlos H. Timaran, MD
Chief, Endovascular Surgery
G. Patrick Clagett Professor in Vascular Surgery
Associate Professor of Surgery
University of Texas – Southwestern
Dallas, TX

F/BEVAR Complexity

- Patient related factors
 - Caudally oriented visceral vessels
 - Vessel stenosis
 - Angulated aorta
 - Presence of a previous endograft in place
 - Difficult cannulation of the contralateral gate
 - Need for hypogastric artery embolization
 - Mandatory with downward branches

Upper Extremity Access

- Utilized for a multitude of endovascular procedures
 - Coronary angiography and stenting
 - Lower extremity interventions
 - Mesenteric ischemia
 - Chimney/snorkel procedures
 - *Stroke risk 3.2-9.5%*
 - Endovascular arch procedures

Technique

- Preferential initial left arm access
- Careful review of CT angiogram
- Ultrasound evaluation of the brachial access
- Decision for upper extremity access solely based on surgeon preference

Disclosures

- Timaran, CH
 - Cook Medical Inc. Consultant / Research / International Proctorship / IDE for P-branch and custom-made devices

Bruem KJ et al. JVS, 2011
Coscas R-K et al. JVS, 2011
Lee J et al. JVS, 2012
Brachial artery exposed, avoiding the median nerve

Access with micropuncture kit and 5F sheath placement

Diaphragm of the 12F sheath is punctured for "buddy-wire" access

Allows placement of four 0.035 inch wires simultaneously

12F sheath allows three 0.035 inch wires and 7F sheath for stent placement
Custom Made Devices with Pre-cannulated Renal Fenestrations for Access from Above
11/19/2015

UE for F/BEVAR Outcomes

- 148 patients underwent F/BEVAR over 5 years
- 98 (66.2%) had upper extremity access
 - 12 (12.2%) percutaneous
 - 86 (87.8%) open
- Any sheath size >7 Fr
 - Open brachial access

Operative Details

<table>
<thead>
<tr>
<th></th>
<th>Femoral</th>
<th>Upper Extremity</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenestrations</td>
<td>2.72 ± 0.09</td>
<td>3.25 ± 0.08</td>
<td>0.0001</td>
</tr>
<tr>
<td>Operative Time</td>
<td>258.8 ± 14.1</td>
<td>327.1 ± 10.6</td>
<td>0.0002</td>
</tr>
<tr>
<td>EBL</td>
<td>490.5 ± 44.1</td>
<td>754.8 ± 65.7</td>
<td>0.0058</td>
</tr>
<tr>
<td>Transfusion</td>
<td>1.23 ± 0.31</td>
<td>2.17 ± 0.43</td>
<td>0.1</td>
</tr>
<tr>
<td>ICU LOS</td>
<td>3.42 ± 0.65</td>
<td>4.20 ± 0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>Total LOS</td>
<td>7.34 ± 1.28</td>
<td>7.03 ± 0.47</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Results – Upper Extremity Sheath Size

- Distribution of Sheath Sizes

Results – Local Complications

- Four (4.1%) patients developed local complications
 - Percutaneous (2 complications)
 - Hematoma with manual pressure, required intraoperative cut-down and primary repair (7 Fr)
 - Hematoma, conservatively managed (6 Fr)
 - Open (2 complications)
 - Hematoma with neurologic symptoms, surgical repair (12 Fr)
 - Hematoma, conservatively managed (12 Fr)

Results - CVA

- Two (1.4%) patients developed a stroke post-procedure
 - Femoral access (1 CVA)
 - 66-year-old male with 6.4 cm pararenal AAA
 - Normal post-operative neurologic exam
 - After 3 days, new onset atrial fibrillation and left arm weakness
 - MRI - right frontal and parietal lobe CVA
 - Discharge to rehab after 5 days, regained 5/5 strength
 - Brachial access (1 CVA)
 - 75-year-old female with 5.7 cm type V TAAA
 - 12F open brachial access, normal postoperative exam
 - Developed severe hypertension after 5 days, unresponsive
 - MRI - large temporal hemorrhagic stroke
 - Family withdrew care

Results – Open vs Percutaneous

<table>
<thead>
<tr>
<th></th>
<th>Access side</th>
<th>Femoral</th>
<th>Upper Extremity</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>12 (12.2%)</td>
<td>96 (87.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td>2/12 (16.7%)</td>
<td>2/86 (2.3%)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>0/12 (0%)</td>
<td>3/86 (3.5%)</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Upper extremity access appears to be a safe and feasible approach for patients undergoing FEVAR
- Open exposure in the upper extremity appears to be safer than percutaneous access
- Upper extremity access during FEVAR is not associated with an increased risk of stroke
 - Multiple visceral vessel stenting
 - Large sheath size
 - Despite increased complexity in the upper extremity group