Will transcarotid approaches for CAS be a game changer even without any specialized devices and why?

P. Bergeron
A. Petrosyan, T. Abdulamit, Jc. Trastour

BACKGROUND

Transfemoral CAS with filters failed to compete with CEA mainly for symptomatic or patients > 75Y because of increased TIA’s rate.

CREST (30 days all stroke rates): 6.9% Vs 3.1% p=0.035

It makes sense to abandon transfemoral CAS for elderly or symptomatic patients.

Transfemoral CAS can be maintained for asymptomatic younger patients with a healthy Aortic arch.

Transcarotid CAS could be a game changer for elderly, symptomatic or any validated HRP

Faggioli (EJVS 2007)

- Technical failure
- Neurological complications

Kastrup (JVS 2003)

I. Avoid Arch navigation
(1% risk in shaggy aorta)
- Cervical Access

Factors to reduce TIA’s and stroke

3 components play a major role:

I. Cervical access (avoid arch navigation)

Combined to:

II. Flow interuption or reversion
(avoid antegrade flow embolisation)

III. Mesh covered stents
(avoid post procedure embolisation)

No disclosure

November 13th 2015
September 11th 2001

Redefining HRP for Surgery

- NRP (normal risk patients) Stroke rate:
 - SVS vascular registry for Symptomatic (Sx) 5.4%; Asymptomatic (Asx) 1.6%.
 - CREST results: Sx: 4.5%; Asx: 2.2%

- HRP:
 - EBM validation VSGNE (vascular group study of New England), JVS oct 2015
 - 3096 CEA in 20 centers (2003-2011) for HRP (sapphire criteria) MAE= 14.2%

4 validated independent Significant Risk Factors associated with adverse event:
 - Age, CHF, DM, COPD
 - SAPPHIRE study: 2 other risk factors not validated by VSGE but unwarranting for CEA based on common sense:
 - hostile neck, high lesions on the ICA

They are validated HRP Candidates for CAS by cervical access
II. Avoid antegrade flow emboli
- no flow technique: distal occlusion (Percusurge + Export Catheter)
Theron, Bergeron, Amor, Henry, Wooley:
J Endovasc Ther. 2002; 9(4): 2.2%

Optional: ischemic preconditioning (Filaerus Vascular 2000)

- reverse flow technique (MOMA, PAES...)
Bersin (Catheter Cardiovasc Interv 2011):
6 US and EU trials submitted to Harvard research analysis
S/D RATE: 2.7%

III. Avoid Post operative emboli
favor Mesh covered stents

Results from cervical access with reverse flow
- Non specialized devices (First attempts)

<table>
<thead>
<tr>
<th>Study</th>
<th># Patients</th>
<th>Death (30 days)</th>
<th>Major Stroke (30 days)</th>
<th>Minor Stroke (30 days)</th>
<th>S/D Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang 2004</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lin 2005</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pippine 2005</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metaxa 2007</td>
<td>62</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cisla 2007</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Forgha 2010</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lead 2010</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>318</td>
<td>0</td>
<td>0.6%</td>
<td>1.6%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Other Cervical access data
- Meta analysis on CAS by cervical access:
545 pts (47% cutdown) 1996-2010
S/D rate: 2.2% ; Strokes: 1.6%
(instead of 3.5% EVA3S, 7.5% SPACE and 4.1% CREST)

- Personal experience: 1992-2012: Among 461 CAS over ~ 2000 Carotid reconstructions
245 selected pts treated by CAS on direct percutaneous access: S/D rate: 0.8%
(1 hyperperfusion 54; 1 monocular blindness; 2 TIA’s)

- Cervical Reverse flow studies with specialized devices
 PROOF study (75 pts, 0% MAE, 6.5% DW-MRI)
 TESLA registry (58 pts, 0% MAE)
 ROADSTER trial (136 pts, 2.2%)
Anticipated S/D rate for CAS by cervical access around 2%

Cervical access: Micro-Emboli Measurement
Palombo (EVS 2010)
New MRI lesions by cervical access: 14% Vs femoral: 3.7%

PROOF Study
DW-MRI Studies - Silk Road’s CEA-Like Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Procedure</th>
<th>Embolic Protection</th>
<th>Patients</th>
<th>% of New DWI Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOS</td>
<td>CEA</td>
<td>Clamp, buckled</td>
<td>107</td>
<td>17%</td>
</tr>
<tr>
<td>PROOF</td>
<td>Silk Road</td>
<td>Transcranial Access, no Flow Reversal</td>
<td>$6</td>
<td>16.3%</td>
</tr>
<tr>
<td>PROOF</td>
<td>Transcranial CAS</td>
<td>Proximal occlusion, MAFASE</td>
<td>31</td>
<td>45%</td>
</tr>
<tr>
<td>ICOS</td>
<td>Transcranial CAS</td>
<td>Distal filter</td>
<td>51</td>
<td>73%</td>
</tr>
<tr>
<td>PROOF</td>
<td>Transcranial CAS</td>
<td>Distal filter (Embo Shield)</td>
<td>31</td>
<td>87%</td>
</tr>
</tbody>
</table>

1. van der Steen AJ et al. CEA: 13% DW-MRI new white matter lesions
2. Student’s t-test at 0.05 significance level
 (c) 2011 Silkroad Medical, Inc.
Cervical access advantages

- No Arch crossing neither manipulation
- No risk of contralateral or posterior stroke
- Quick procedure
- Lower dose of heparine and contrast
- No risk of cranial nerve injury
- Simplified stenting: straight and short path from the carotid access enables to accommodate carotid tortuositites or angulated take off of ICA
- Safe access thanks to US guided puncture and use of closing device
- Can be associated Advantageously to antegrade flow interruption

CONCLUSION

Transcarotid approach for CAS will be a game changer for surgeons who desire a less invasive and safe procedure with excellent long term outcomes.

Cardiologist will not change for a cervical approach but should limit transfemoral CAS to ASX patients < 75Y

The use of specialized devices is not mandatory but helps to secure the procedure