What is the best treatment for treating popliteal occlusive disease: PTA (POBA vs DEB), Stent (Bare vs DES), Atherectomy or Bypass

Jörn O. Balzer

Anatomical considerations

- Repeated strain from knee flexion during normal human movement.
- Two relatively fixed arterial points,
 - cranially at the adductor hiatus where the upper genicular branches arise
 - caudally where the anterior tibial artery crosses the interosseus membrane.

Techniques for Revasc.

- Balloon angioplasty
- Cutting balloon angioplasty
- Stent-PTA
- Drug eluting stents
- Drug coated balloons
- Atherectomy

Provisional stenting should be considered over primary stenting for the treatment of PA lesions.

- Stent-Fx rate: 3.4%

PA: Balloon angioplasty

Primary patency after tw and 54% for CLI patients

- Patients with multiple pop have early PTA failure (p=)
- The major benefit of this patients with a single pop

PA: Balloon angioplasty

- CLI patients benefit significantly less from the procedure.

Disclosures

- None

Veith 2015 | 20.11.2015 | 1

Veith 2015 | 20.11.2015 | 3

Varcoe, RL. J Cardiovasc Surg 2015;56:55-65

Veith 2015 | 20.11.2015 | 4

Veith 2015 | 20.11.2015 | 5

PA: Balloon angioplasty

PA: Atherectomy

- LIPS 2 Study (LPTA: n=385 vs. PTA: n=331)
 - More TASC-D lesions in LPTA group (92% vs. 67%)
 - Procedure type was not associated with increased risk of repeat revascularization.
 - Median time to repeat revascularization was similar in the two groups.
 - TLR 24.1% (LPTA) vs. 22.4% (PTA); similar limb salvage

PA: Atherectomy

- ATH vs. PTA study (ATH: n=18 vs. PTA: n=38)
 - No significant difference in respect to TASC classifications, runoff score, lesion length, number of vessels treated, and the presence of occlusive lesions.
 - Provisional stenting more frequent in PTA group.

Drug coated balloons

In.Pact SFA

	N	Male	DM	Lesion length [cm]	Proximal Stenting	Pletal
DCB	220	65.0%	40.5%	8.94±4.89	7.3%	NS
POBA	111	67.6%	48.6%	8.81±5.12	12.6%	NS

Levant 2

	N	Male	DM	Lesion length [cm]	Proximal Stenting	Pletal
DCB	316	61.3%	43.4%	6.20±4.10	2.5%	9.7%
POBA	160	66.9%	41.9%	6.30±4.00	6.9%	7.5%

Drug coated balloons

Levant 2:

- 12 month PPR was 65.2% (DCB) vs 52.6% (POBA; \(P=0.02 \) for superiority)

In.PACT SFA:

- 12-month PPR was 82.2% (DCB) versus 52.4% (POBA; \(P<0.001 \))

PTFE-covered Stent

- The hybrid heparin-bonded TIGRIS stent is a safe and effective endovascular option for complex occlusive disease of the popliteal artery with promising clinical and anatomical outcomes in the mid-term period.

Interwoven Nitinol Stent

- No stent fractures during the 16.6 months follow-up.

Conclusion

- Data regarding the performance of endovascular procedures in the popliteal artery in particular are scarce.
- PTA of the popliteal artery is safe and effective, even between the short and long term.
- DCB-PTA seems to improve outcome.
- Atherectomy can help.
- Standard nitinol stents are usually not suitable the popliteal artery.
 - New stent designs promising good clinical and anatomical outcomes.

Treatment algorithm SFA