How Are 3D Navigational Tools Helpful In Lower Extremity Interventions

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
Lugano
Switzerland

VEITH symposium 2015
New York, November 16-21 2015

Conflict of interest

• None

Fusion imaging

• 20 endovascular peripheral arterial procedures in 17 patients
 – 15 MRA
 – 2 CTA
• 3D road-map added value in 15 procedures in 12 patients
• In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic angiography

Accuracy

• Average maximum difference in position of vasculature on angiography and MRA/CTA fusion roadmap was 6.41 mm with a standard deviation of 11.12 mm
• Excluding three patients with major leg and pelvis movement during the procedure, average maximum difference was 1.86 ± 0.95 mm (approximately 95% of differences were between 0 and 3.72 mm; 2 ± 1.96 standard deviation)

Practical aspect

• Average time needed for image registration 5 ± 2 min
• Registration can be performed on the 3D workstation while further preparations inside the angiography suite (draping the patient, preparing the table) are performed
• Actual time loss for fusion road-mapping negligible

Fusion imaging

• Fusion image road-mapping can be used for navigation, for crossing stenosis occlusions and positioning stents
• Optimal C-arm projection angles can be identified on the fusion road-map i.e. without fluoroscopy
• Kissing stenting and subsequent kissing angioplasty can be performed without any angiographic acquisition leading to reduction in contrast dose

Ierardi AM, et al, CVIR DOI 10.1007/s00270-015-1158-4
Implications

• Image fusion technology holds the potential for CM reduction (relevant for patients with renal impairment)
• Zero-iodinated-contrast interventions are possible (combination with IVUS/ultrasound control, low volume of gadolinium or CO₂)

Disadvantages

• MRA based registration requires acquisition of a cone-beam CT leading to additional radiation exposure (patient only; CTA based registration can be performed using fluoroscopy only)
• ED of abdominal CBCT corresponds to approximately half of the dose of abdominal MDCT
• Application of CBCT will result in a reduction of patients total procedural radiation exposure if a reduction of fluoroscopy time of approximately 7 min is achieved

Disadvantages

• Mean patients’ radiation dose in terms of dose area product (DAP) from CBCT in the pelvic region 14.5 Gycm² (i.e. on average 21.4 % of total procedural DAP)
• Calculated maximum risk for lifetime exposure induced cancer death is less than 0.03 % in pelvic cone-beam CT
• For the elderly PAD patient population, potential benefit from contrast savings by use of fusion road-mapping probably outweighs the negative impact of the extra radiation dose

Limitations

• Minor displacement of the fusion road-map can be corrected manually during the procedure by readjusting the MRA/CTA dataset on fluoroscopy landmarks (catheter, vessel wall calcifications)
• Risk of device misplacement in
 – Smaller size vessels diameter
 – Recanalization procedures
 – Stenting nearby side branches

Registration
Adjusting alignment

Angiography

Recanalization

PTA

Use vessel wall calcification to optimize registration/adjust alignment
Control angiography

Conclusions

• Fluoroscopy with MRA/CTA fusion guidance for peripheral arterial interventions is feasible
• This technology may contribute to increase procedural safety (radiation/contrast)