Procedure trends

Increase in
- number of procedures
- complexity

Increase in
- procedure time and
- exposure dose
Measures reducing dose

Endovascular: same IQ at 83% less X-ray

Same procedure by different surgeons – different radiation doses

Average radiation dose for EVAR

<table>
<thead>
<tr>
<th>Surgeon 1</th>
<th>Surgeon 2</th>
<th>Surgeon 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.96 mS</td>
<td>2.50 mS</td>
<td>5.60 mS</td>
</tr>
</tbody>
</table>

Significant difference in radiation dose among surgeons

Awareness ≠ (Re)action

No perception of danger → no awareness → ... no action for protection

“Tired I felt this radiation could not hurt me. I felt indestructible”

How we assess radiation in a real life?

Fluoro time

Fluoro time is visible and easily understandable
Dose for different procedures (USZ)

![Graph showing Total Dose Area Product (DAP) per Procedure]

- Highest dose is near to the tube

Dose EVAR - staff members (USZ)

![Cumulative radiation dose]

Highest dose is near to the tube

Radiation “visibility” to minimize risk

“See” your scatter dose mapping during procedure to minimise risk exposure for surgeons

Working tools – Dose Aware

DoseAware

Make the invisible visible

Empowers you to manage your personal x-ray dose exposure

- Real-time visualizing of personal x-ray dose at a glance
- Immediate see the effect of change and relation to dose

Philips DoseAware system

Dosimeter should be weared outside of the lead rubber

→ it avoids bias of
 - operator location
 - utilisation of protective devices

→ it allows to evaluate
 - the efficacy of selfprotective measures

Note: DoseAware is not a legal dosimeter for occupational dose. Film/TLD badges are still legally required by radiation protection authority.
Philips DoseAware system

Each team-member wears his own dosimeter

Dose-rate during 1 EVAR procedure

DoseAware software generates an EXCEL Table with exposure data for easy statistical assessment

Real time radiation measurement does not reduce radiation dose in short term FU

Radiation dose of radiologists during 1 week blind vs. 1 week regular application of the real time radiation measurement system

Staff dose measurement in real time, an evaluation of Univ Raysafe I
Mehdi Khosravinia
Department of Radiation Physics
University of Umeå, Umeå, Sweden January, 2013

Real time radiation measurement reduces radiation dose in mid term FU

<table>
<thead>
<tr>
<th></th>
<th>Operators</th>
<th>Assistant nurses</th>
<th>Interns</th>
<th>Patient responsible</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective PDD</td>
<td>2601</td>
<td>466</td>
<td>129</td>
<td>83</td>
<td>3231</td>
</tr>
<tr>
<td>Collective PDD</td>
<td>1782</td>
<td>256</td>
<td>112</td>
<td>89</td>
<td>2133</td>
</tr>
</tbody>
</table>

- * p < 0.05

Application of the DoseAware
- Period I – blind (2 months)
- Period II – regular (2 months)

Tu Mai, The use of a Real-Time Displayed Measuring System for X-rays an evaluation of personnel doses in an angiography room with a DoseAware System
Jan. 2011, Gothenburg, Sweden

Conclusion

- Real time radiation measurement reduces radiation dose in mid term FU
- Regular usage of DoseAware can potentially reduce radiation exposure of the surgical team members
- Long term FU study is necessary to prove the effectiveness of DoseAware system
Other methods

Figure 3. Set-up in the hybrid room and in the operating room with the mobile C-arm.

Impact of Hybrid Rooms with Image Fusion on Radiation Exposure during Endovascular Aortic Repair

A. Ramdani, S. Duran, J. Spadaccini, A. Martin-Grande, E. de Boer, G. Kaptein, M. Pilewski, W. Rohde

Thank You!

Vieth Symposium
Connecting The Vascular Community
42nd Anniversary
Tuesday - Saturday, November 17-21, 2015