Present State of Atherectomy Devices for Lower Limb Ischemia: How Solid is the Evidence That They Make a Difference: A Surgeon’s View

VEITH 2015

James F. McKinsey, MD, FACS
Mount Sinai Health Care System
Vice Chairman of Surgery
Mount Sinai Roosevelt Hospital
Systems Chief of Complex Aortic Interventions
Mount Sinai Systems

DEFINITIVE LE
Key Eligibility Criteria

Inclusion Criteria
- RCC 1-6
- ≥ 50% stenosis
- Lesion Length ≤ 20 cm
- Reference Vessel ≥ 1.5 mm and ≤ 7.0 mm

Exclusion Criteria
- Severe calcification
- In-stent restenosis
- Aneurysmal target vessel

Study Design and Primary Endpoints

800 patients
47 centers
Claudicants (RCC 1-3)
598 patients*
Primary patency by Duplex US at 12 mos

CLI (RCC 4-6)
201 patients
Freedom from major unplanned amputation at 12 mos

*1 censored due to informed consent violation

Baseline Lesion Characteristics
Core Lab Reported

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Claudication (RCC 1-3)</th>
<th>CLI (RCC 4-6)</th>
<th>All Subjects (RCC 1-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>598</td>
<td>201</td>
<td>799</td>
</tr>
<tr>
<td>Number of Lesions</td>
<td>743</td>
<td>279</td>
<td>1022</td>
</tr>
<tr>
<td>Mean Length (cm)</td>
<td>7.5</td>
<td>7.2</td>
<td>7.4</td>
</tr>
<tr>
<td>Baseline Stenosis (%)</td>
<td>73</td>
<td>76</td>
<td>74</td>
</tr>
<tr>
<td>Occlusions (%)</td>
<td>17</td>
<td>30</td>
<td>21</td>
</tr>
</tbody>
</table>

SFA: 72% (536) 48% (135) 66% (671)
Popliteal: 15% (114) 17% (48) 16% (162)
Infrapopliteal: 13% (93) 34% (96) 18% (182)

Primary Patency
Claudicant Cohort

PSVR ≤ 3.5 → 82%
PSVR ≤ 2.4 → 78%
Primary Patency by Kaplan-Meier*
Claudicant Cohort

Primary Patency by Lesion Length
Claudicant Cohort (PSVR ≤ 2.4)

Primary Patency by Vessel
Claudicant Cohort (PSVR ≤ 2.4)

DEF LE CLI Cohort Primary Endpoint:
Freedom from Major Amputation at 12 Months

Periprocedural Complications (All Subjects)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Incidence (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distal Embolization</td>
<td>3.8% (30)</td>
</tr>
<tr>
<td>No Intervention</td>
<td>2.1% (17)</td>
</tr>
<tr>
<td>Surgical Intervention</td>
<td>0.1% (1)</td>
</tr>
<tr>
<td>Endovascular Intervention</td>
<td>1.5% (12)</td>
</tr>
<tr>
<td>Dissection (flow-limiting)</td>
<td>2.3% (18)</td>
</tr>
<tr>
<td>No Intervention</td>
<td>0.8% (6)</td>
</tr>
<tr>
<td>Surgical Intervention</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Endovascular Intervention</td>
<td>1.5% (12)</td>
</tr>
<tr>
<td>Perforation</td>
<td>5.3% (44)</td>
</tr>
<tr>
<td>No Intervention</td>
<td>1.1% (9)</td>
</tr>
<tr>
<td>Surgical Intervention</td>
<td>0.1% (1)</td>
</tr>
<tr>
<td>Endovascular Intervention</td>
<td>4.0% (32)</td>
</tr>
<tr>
<td>OVERALL intervention rate</td>
<td>7.6% (61)</td>
</tr>
</tbody>
</table>

*PSVR ≤ 2.4

Diabetics: 78%
Non-Diabetics: 77%

Diabetes: 78%
Non-Diabetes: 77%

*PSVR < 2.4
A Pilot Study of Antirestenosis Treatment
12-Month Results: Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency

Thomas Zeller, MD
Universitäts-Herzzentrum Freiburg-
Bad Krozingen
Bad Krozingen, Germany

DEFINITIVE AR

Key Inclusion and Exclusion Criteria

Inclusion Criteria
1. Rutherford Clinical Category Score of 2, 3 or 4
2. ≥70% stenosis, restenosis or occlusion in the SFA and/or popliteal artery
3. Target lesion(s) length is 7-15 cm
4. Target vessel diameter is ≥4 mm and ≤7 mm

Exclusion Criteria
1. In-stent restenosis
2. Aneurysmal target vessel
3. 2 or more lesions that require treatment in the target limb

Periprocedural Outcomes (per CEC)
Higher Technical Success and Lower Incidence of Flow-Limiting Dissection in DAART RCT Arm

Outcomes	DAART Severe Ca++ Arm	DCB	p-Value (DAART vs. DCB)
Technical Success | 89.6% | 64.2% | 0.004
Distal Embolization | 6% (3/48) | 0% (0/54) | 0.101
No Intervention | 1 0 1
Endovascular Intervention | 2 0 0
Bail-Out Stent | 0% (0/48) | 3.7% (2/54) | 0.50
Dissection (flow-limiting, Grade C/D) | 2% (1/48) | 19% (10/54) | 0.01
No Intervention | 1 6 0
Endovascular Intervention | 0 4 0
Perforation | 4% (2/48) | 0% (0/54) | 0.22
No Intervention | 0 0 0
Endovascular Intervention | 2 0 0

Technical success defined as achieving ≤30% residual stenosis following protocol-defined treatment and before adjunctive therapy (ie post-dilatation). No surgical interventions were required for any patient.

Key Study Outcome at 12 Months
Angiographic Patency

12-Month Patency: DAART RCT Patients
Is it Important to Achieve ≤30% Residual Stenosis with Directional Atherectomy Post-Procedure?

12-Month Results: DAART RCT Patients

EXCITE ISR Trial Overview

DESIGN
Prospective, randomized, multi-center clinical evaluation of excimer laser atherectomy (ELA) for ISR

PRIMARY SAFETY ENDPOINT
Major Adverse Events (MAE) during hospitalization through 37-day follow-up to include all death, unplanned major amputation, or target lesion revascularization

PRIMARY EFFECTIVENESS ENDPOINT
Freedom from clinically driven TLR through 6 month follow-up (212 days)

252 patients enrolled between June 2011 and March 2014 at 40 clinical sites in United States
252 lesions treatable by guidewire
170 ELA + PTA
82 PTA
Primary Safety endpoint at 37 days (n=158)
Primary Safety endpoint at 37 days (n=77)
Primary Safety endpoint at 212 days (n=187)
Primary Safety endpoint at 212 days (n=177)
Baseline Lesion Characteristics

<table>
<thead>
<tr>
<th>ELA + PTA (N=169)</th>
<th>PTA Alone (N=81)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Lesion Length (cm)</td>
<td>19.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Diameter Stenosis (%)</td>
<td>82.0</td>
<td>83.5</td>
</tr>
<tr>
<td>Total Occlusion (%)</td>
<td>21.6</td>
<td>22.5</td>
</tr>
<tr>
<td>TASC C/D (%)</td>
<td>58.9</td>
<td>54.7</td>
</tr>
<tr>
<td>Calcium (Mod/Sev) (%)</td>
<td>27.6</td>
<td>10.0</td>
</tr>
<tr>
<td>SI runoff vessel (%)</td>
<td>38.2</td>
<td>24.4</td>
</tr>
<tr>
<td>Stent Fracture (%)</td>
<td>None</td>
<td>6.0</td>
</tr>
<tr>
<td>Type 1 - 2 (%)</td>
<td>11.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Type 3 and 4 (%)</td>
<td>3.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Longest lesions in any IDE peripheral study
- 20% of lesions > 30 cm

Procedural Success

<table>
<thead>
<tr>
<th>ELA+PTA (n=170)</th>
<th>PTA (n=82)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo Elite use</td>
<td>79.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Distal protection</td>
<td>40.6</td>
<td>36.5</td>
</tr>
<tr>
<td>Final % Diameter Stenosis (%)</td>
<td>22.0±19.3</td>
<td>25.6±11.8</td>
</tr>
<tr>
<td>Residual Stenosis >30% (%)</td>
<td>4.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Procedural Success*</td>
<td>92.9</td>
<td>81.7</td>
</tr>
</tbody>
</table>

* Achievement of <30% residual stenosis by visual assessment without bailout procedure

Primary Endpoints

- 94.4% Freedom from MAC (30 days) ELA + PTA vs 78.9% PTA
- 78.3% Freedom from TLR (6 months) ELA + PTA vs 52.8% PTA

12 Month Follow Up

<table>
<thead>
<tr>
<th>Laser + PTA</th>
<th>PTA Alone</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with 12 Month Visit*</td>
<td>100 (59%)</td>
<td>42 (51%)</td>
</tr>
<tr>
<td>At FU Average Lesion Length (cm)</td>
<td>19.3</td>
<td>18.9</td>
</tr>
<tr>
<td>At FU TASC C/D Lesion (%)</td>
<td>98.9</td>
<td>96.5</td>
</tr>
<tr>
<td>Withdrawal CPI</td>
<td>241 (4%)</td>
<td>171 (19%)</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>98.3</td>
<td>94.8</td>
</tr>
<tr>
<td>Freedom from TLR (%)</td>
<td>53.8</td>
<td>41.7</td>
</tr>
<tr>
<td>Freedom from Amputation (%)</td>
<td>70.0</td>
<td>75.1</td>
</tr>
<tr>
<td>MAC Average</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>ABI Average</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Rutherford Class Average</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Stent Fracture Grade (%)</td>
<td>2.9**</td>
<td>3.7 (5/170)</td>
</tr>
</tbody>
</table>

* Patients were exited after occurrence of MACE prior to 12 month follow up
** Kaplan-Meier
*** One stent fracture occurred in non-lead stent deployed post treatment
**** Four other minor stent fractures occurred at 1 and 12 M in the ELA+PTA arm. Three minor stent fractures occurred at 12 M in the PTA arm.

TLR Analysis

- Average time to TLR 133 days vs 212 days, PTA alone vs ELA + PTA (p=0.03)
- Previous treatment for ISR and lesion length were independent predictors of TLR
- Overall, ELA + PTA TLR risk reduction 43%
 [HR 0.57, CI 0.38-0.84; p=0.005]
 - 49 % ELA + PTA TLR risk reduction in lesions > 15 cm
 [HR 0.51, CI 0.32-0.81; p=0.004]
 - 53 % ELA + PTA TLR risk reduction in TASC C/D lesions
 [HR 0.47, CI 0.29-0.76; p=0.002]

Conclusions

- Directional atherectomy is safe & effective at 12 months
 - Effective for short, medium and long lesions in claudicants & CLI patients
 - 82% Patency in PTA (6.10cm) in claudicant patients
 - 78% Patency in infra-popliteal (6.0cm) in CLI patients
 - 90% Limb Salvage in CLI patients
- Distal embolization requiring intervention rate of 1.6% independently adjudicated is low and proves safety of SilverHawk for the treatment of infra-inguinal arterial disease. Furthermore, all complication rate needing treatment is 7.6%
- Diabetes perform equally well when treated with directional atherectomy to non-diabetics for claudicants
- Anti Restenosis Therapy may increase patency of complex atherectomy
- Important to obtain <30% residual stenosis with atherectomy
- Excite Trial shows advantage for treatment of ISR over POBA