Spontaneous SMA Dissections

- Typically found at the convex curvature of the SMA
 - 14% Zone 1
 - 64% Zone 2
 - 21% Zone 3
- Mean distance from SMA ostium – 3 cm
- Area of SMA that is possibly more susceptible to shearing forces due to relationship to the pancreas
- Creation of complex flow dynamics at convex part of SMA (Park, J Vasc Surg 2011)

SMA Dissection - Location

Classification of Dissection

- A number of proposed classifications take in account:
 - Presence or absence of false lumen thrombosis
 - Compression of true lumen
 - Occlusion of SMA
 - Aneurysmal change
- Classification by Yun
 - Type I – Patent true and false lumen
 - Type II – Patent true lumen
 - IIA – False lumen: blind pouch
 - IIB – Thrombosed false lumen
 - Type III – Dissection with SMA occlusion

SMA Dissection

- Spontaneous, isolated dissection - 0.06% in autopsy series
 - Prior to 2007: Morris reported on 71 cases*
 - 2007-2013: 226 cases compiled by Ahn**
- Not a topic found in Rutherford’s Vascular Surgery
- Patient characteristics (symptomatic):
 - More often affects men (85%) than women (15%)
 - Typically in 5th decade of life
 - Abdominal pain (100%) – due to dissection, not intestinal ischemia
 - Hypertension (44%)
 - Hyperlipidemia (41%)
 - Smoking (13%)
 - Abdominal tenderness (33%)
 - Possible association with Marfan’s Syndrome, fibromuscular dysplasia, Ehlers-Danlos Syndrome, cystic medial necrosis
 - Rare cause of bowel infarction
- Diagnostic method of choice - CTA

Spontaneous SMA Dissection

- Prior to 2007: Morris reported on 71 cases*
- 2007-2013: 226 cases compiled by Ahn**
- Not a topic found in Rutherford’s Vascular Surgery
- Patient characteristics (symptomatic):
 - More often affects men (85%) than women (15%)
 - Typically in 5th decade of life
 - Abdominal pain (100%) – due to dissection, not intestinal ischemia
 - Hypertension (44%)
 - Hyperlipidemia (41%)
 - Smoking (13%)
 - Abdominal tenderness (33%)
 - Possible association with Marfan’s Syndrome, fibromuscular dysplasia, Ehlers-Danlos Syndrome, cystic medial necrosis
 - Rare cause of bowel infarction
- Diagnostic method of choice - CTA

**Ahn, An Vasc Surg 201428
Classification of Dissection

- 32 patients:
 - 41% Type I
 - 50% Type II
 - 9% Type III

- Incidentally found lesions (no symptoms): 7/10 (70%) Type I
- Symptomatic patients: 13/22 (69%) Type II
- Severity of symptoms correlated with length of dissection – not type of dissection

Yun, Eur J Endovasc Surg 2009

Treatment of SMA Dissection

- Historically, treated aggressively
- Conservative Management
 - Bowel rest
 - Intravenous fluid
 - Anticoagulation – heparin, antiplatelet agent
 - Prevent thrombus propagation
 - Yun suggests anticoagulation not necessary
- Indications for Invasive Management
 - Signs of bowel infarction
 - Arterial rupture
 - Persistent abdominal pain
 - Severe compression of true lumen
 - Aneurysmal change of SMA

Yun, Eur J Endovasc Surg 2009

Invasive Treatment

- Open Surgical approach
 - Interposition graft
 - Bypass
 - Antegrade
 - Retrograde (from aorta or iliac arteries)
 - Excision of dissection flap with patch angioplasty

Zettl, Arch Surg. 2010

- Endovascular
 - Antegrade angioplasty/stent
 - Bare metal
 - Covered
 - Retrograde angioplasty/stent

Gobbel, JVS. 2009

Management Algorithm

Kim, J Vasc Surg 2014

Conclusion

- Incidentally found SMA dissection:
 - Regular surveillance imaging (annual CTA)
 - Progression of dissection or aneurysm dilation: Stent placement
- Acute abdominal pain with SMA dissection:
 - Initial conservative management for most patients
 - Suspension of bowel infarction – open surgery
 - Evaluate bowel
 - Revascularization (bypass, retrograde stent, antegrade stent)
 - Compromised flow in SMA (severe narrowing of true lumen, persistent pain)
 - Anticoagulation
 - Stent
 - Resolution of symptoms with conservative management
 - Regular surveillance
Chronic SMA Occlusion

SMA Occlusion

- **Etiology**
 - Atherosclerosis
 - SMA dissection
 - Aortic Dissection
 - Vasculitis (e.g., Lupus, Radiation arteritis)

- **Symptoms**
 - Weight loss
 - Post-prandial abdominal pain
 - Mid-epigastric
 - Occur 15 – 45 minutes after a meal
 - Severity varies based on amount and type of food ingested
 - Food fear – leads to decrease in oral intake
 - Significant occlusive disease is typically seen in two of three mesenteric vessels (celiac, SMA, IMA) before patients become symptomatic

SMA Occlusion - Diagnosis

- History and physical examination
 - May be unclear, patients can present with cachexia and appear to have advanced cancer
 - Typically a strong history of smoking, other peripheral vascular disease manifestation
- Rule out other causes
- Diagnostic studies:
 - Duplex scan
 - CTA
 - MRA
 - Angiography
 - Lesion typically at the ostium of SMA – extension of aortic plaque into the SMA

SMA Occlusion - Stent

- Antegrade stent
 - Femoral access
 - Brachial access – may be advantageous for crossing occlusion
 - Ostial lesion – may not have a target to engage catheter/wire – increased incidence of failure
- Retrograde
 - Expose SMA and place sheath in distal SMA
 - Allows evaluation of bowel (important in acute ischemia)

- **Bare metal vs. covered stent**
 - Comparison between bare metal stent (BMS) and Covered stent (CS) for chronic mesenteric angioplasty
 - BMS – 147 patients, CS – 42 patients
 - Less restenosis, recurrence, re-intervention with covered stent

*Oderich, J Vasc Surg 2013

Retrograde SMA stent

SMA Occlusion - Bypass

- Antegrade bypass
 - Supra-renal aorta to SMA (and often to celiac trunk)
 - Supra-renal aorta typically is relatively free of atherosclerotic disease
 - Historically, two vessels are revascularized
 - Use a bifurcated prosthetic graft – Dacron
 - Retrograde bypass
 - Iliac artery as inflow vessel
 - Prosthetic or vein
 - GSV vs. Deep vein
 - Inferior vena cava
 - Possible graft kinking
Conclusions

- Patients may be asymptomatic
 - If no celiac stenosis, may not need intervention
- Symptomatic patients or patients with multi-vessel mesenteric disease – revascularization
 - Endovascular approach
 - Brachial approach may offer best chance
 - Personal approach is to use a covered stent
 - Open revascularization
 - Antegrade bypass
 - Retrograde bypass – my preference, using deep vein
- Open surgical revascularization with ischemic/infarcted bowel
 - Retrograde angioplasty/stent
 - Retrograde bypass using vein

Selected References