Heparin dosing during vascular procedures should be monitored by ACT levels to be safe and effective.

Arno M. Wiersema, MD PhD
Vascular surgeon.
Westfriesgasthuis, Hoorn
VUmc, Amsterdam
The Netherlands

Disclosures.
No disclosures with regards to current presentation.

Heparin and ACT.

Heparin:
- Discovery: Mc Lean or Howell?
- Introduced in surgery in humans by Murray 1940, landslide
- Permitted clamping arteries without clotting
- Vascular surgery developed rapidly
- Extended to the heart: heart lung machine 1953
- First PTA Charles Dotter 1964
- Heparin incorporated in all (endo)vascular procedures worldwide

Heparin and ACT.

Heparin:
- Advantage is self evident
- Disadvantage also ...
 - Increase peri- and post-procedure bleeding
 - Blood loss, blood transfusions, increase procedure time
 - Hematoma: pain, infection
 - HIT
 - “Devil in disguise..?”

Heparin and ACT.

Heparin:
- Worldwide used by vascular surgeons and interventional radiologists
- AAA repair: 80-85%, other procedures almost 100%
- But surveys show large variation present in:
 Dosage, repeat, regional use, protamine use
 Measuring the effect: 0-35 %, more in USA.
- Guidelines?:
 - Dutch guidelines: Nothing
 - ESVS: Nothing
 - SVS: Systemic heparinization, by almost all surgeons;
 75-100 U/kg; AAA: heparin may be omitted, no literature
 - ACCP: Systemic heparinization, 100-150 U/kg, repeat
 44-50 min with 50 U/kg, literature RCT 1996.
Heparin and ACT.

Heparin:

• Unpredictable effect in the individual patient!
• At least 35% of patients either too high or too low
• Could have (major?) influence on all results of vascular procedures:
 - Patency open and endovascular
 - Occlusion in PEVAR/BEVAR, chimneys, periscopes
 - Complication rate: bleeding and thrombotic
• Protamine use? More in US than Europe/UK.
• Alternatives: Dextran, iloprost, anti-thrombin, LMWH, bivalirudin

Heparin and ACT.

Test:

• Considering all this about heparin, measuring the actual effect of heparin in the patient during all vascular procedures should be obligatory
• To insure tailor-made peri-procedural anticoagulation individual patient
• What test?
 - Activated Partial Thromboplastin Time (APTT)
 - Thrombin Time (TT)
 - Prothrombin Time (PT)
 - Antithrombin-III (AT-III)
 - Fibrinogen
 - Heparin concentration

Heparin and ACT.

Test:

• What does literature shows us?
• Abundant in cardio-vascular procedures, open and endovascular
• Sparse in non-cardiac vascular procedures, open and endovascular
• "Consensus": Activated Clotting Time (ACT):
 - Less bleeding complications
 - Reliable with high concentrations of heparin
 - Point of Care (POC) on (hybrid)OR, angiosuite

Heparin and ACT.

ACT:

• "Proof" from literature:
 • Lee et al Surg Gyn Obst 1982;156(6):806-12.
 • Shammas et al J Invasiv Cardiol 2003;15:242-246
 • Kasapis et al Circ Carentess Intens. 2001;5:593-601

• Conclusion: Variability of patient response to heparin makes it impossible to achieve or maintain adequate levels of anticoagulation without measuring the effect of heparin

Heparin and ACT.

ACT:

• What can we learn from that "older" and sparse data?
• No known optimal ACT, but 200 ± 20 sec or 2 x baseline seems rational
• Data essential in non-cardiac arterial procedures
 • VUmc Amsterdam: "RetroVasc" and "HepaVasc"
• Role of measuring and calculating individual heparin requirements
• In order to project individual dosing
• Value proven in cardiovascular procedures: HMS Medtronic.
Heparin and ACT.

- It is time that during non-cardiac vascular procedures the individual patient receives tailor made anticoagulation.
- It should be mandatory therefore to measure the actual effect of heparin by using the ACT.
- Data are warranted in order to establish optimal values of ACT.
- Further research to optimize heparin use to make sure results of vascular procedures are not negatively influenced by inadequate anticoagulation.