New Imaging Modalities Essential For Accurate Diagnosis Of Vascular Malformations

Cynthia K. Shortell, MD
Duke University Medical Center
Durham, North Carolina
VEITH Symposium, New York, November, 2015

Imaging Modalities

- Critical information when performing imaging on CVMs:
 - Lesion extent
 - Flow characteristics (high vs low)
 - Relationship to normal/vital structures
 - Vascular
 - Non-vascular (nerve, muscle, bone)

Imaging Modalities

- Multiple non-invasive imaging modalities are available for the diagnosis of congenital vascular malformations (CVMs):
 - Ultrasonography (US)
 - Computed tomography (CT)
 - Standard magnetic resonance imaging (MRI)

Imaging Modalities

- Each of these traditional modalities has a role, and yet each has limitations with regard to the critical information:
 - Variable degrees of diagnostic accuracy
 - Frequently insufficient information with regards to pre-procedural planning
 - Significant number of patients who required evaluation with a catheter based angiography to determine flow characteristic

Ultrasonography

Venous malformations demonstrate mixed (or monophasic) waveform on US
Lymphatic malformations

Lymphatic malformations demonstrate absence of flow signal on US.

Arterio-venous malformations

Arterio-venous malformations demonstrate arterialized venous waveform and spectral broadening.

Coronal T2-weighted MRI

Coronal T2-weighted MRI demonstrates hyperintense signal in the venous malformation involving the anterolateral aspect of the right upper extremity.

Axial T2-weighted MRI of the same patient

Axial T2-weighted MRI of the same patient.

MRI demonstrates hyperintense T2 signals in a multiseptated, extensive lymphatic malformation in a newborn

T1-weighted fat-saturated gadolinium-enhanced imaging of arterio-venous malformation reveals multiple flow voids (arrow)
MRI - Conventional

- used not only for evaluation of a lesion but for the evaluation of deep venous system since the prevalence of deep venous system anomalies is high in CVM patients.

Imaging Modalities - Limitations

- US is useful for the initial assessment of CVMs.
- Does not give information about extent of CVMs and relationship to surrounding anatomical structures.
- Operator dependent.
- Conventional MRI and/or CT can demonstrate the extent of larger lesions.
- However, it is not adequate to differentiate between different types of CVMs in more complex cases.

Static MR Angiography

- Static coronal images → 3D MIP

- Time-Resolved MRA Acquisition

 - Arterial phase
 - Venous phase

 - ROBUST HEMODYNAMIC DATA and relationship to vital structures

 - Courtesy of Charles Kim, MD
Arterial Phase

Arterial phase image demonstrates no vascular abnormality = LFVM

Early venous phase

Late venous phase

Arterial phase image demonstrates no vascular abnormality = LFVM

Absence of the appearance of the malformation during the arterial phase of the maximum intensity projection time-resolved imaging is confirmatory for a low-flow lesion

dceMRI demonstrates a lesion during the arterial phase what confirms a large HFVM involving the lateral aspect of the proximal upper extremity

Inconclusive dceMRI

- In inconclusive cases, confirmatory arteriography is required.
- Especially in cases in which treatment is deemed necessary.

Inconclusive dceMRI > Arteriogram

- Arteriography is performed
 - to confirm the diagnosis
 - also to identify the communication pattern with the draining venous system
 - to provide an opportunity for treatment planning and/or intervention
Our Experience

- **Evaluation of dceMRI:**
 - 122 patients
 - Aged <1 to 70 years
 - 52 males (42.6%)
 - 70 females (57.4%)
 - 68 patients who underwent dceMRI also had a confirmatory imaging/procedure

- **Diagnostic modalities** satisfied by the frequency utilized by Duke Multi-D Vascular Malformation Team

dceMRI Accuracy

<table>
<thead>
<tr>
<th>Confirming modality</th>
<th>High Flow</th>
<th>Low Flow</th>
<th>High Flow</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>CT</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Angiography</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Interventional tests</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

dceMRI Accuracy (Dr. Kramer): 83.8%

Is dceMRI the imaging modality of choice?

- Differentiate between high flow and low flow lesions: ✔
- Determine relationship between the VM and adjacent structures: ✔
- Confer minimal risk to patient: ✔

Summary

- Diagnostic algorithm with novel imaging techniques (dceMRI) optimizes imaging of CVMs.
- dceMRI has been validated as clinically applicable for making an accurate anatomical and hemodynamic diagnosis of CVMs.
Summary

- dceMRI avoids unnecessary diagnostic arteriograms in majority of cases.
 - Patients can be spared the expense, risk, and inconvenience of a catheter-based diagnostic study, as well as delayed or erroneous diagnosis.

Summary

- Detailed, step-by-step description of diagnostic protocols available in:

IUA Diagnostic Guidelines-2014

Thank You!