Technical Considerations and Emerging Technology for Chronic Venous Occlusions

Brian G. DeRubertis, MD, FACS
Associate Professor of Surgery
Division of Vascular Surgery
University of California Los Angeles

Disclosures

In the last 12 months I have served as a consultant, speaker, proctor or served on an advisory board for the following companies:

- Abbott Vascular
- Boston Scientific
- Cook Medical
- Medtronic

Chronic Venous Occlusions: Increased Recognition of the Problem

- Impact of DVT on Venous Patency:
 - Up to 100,000 inpatient DVT diagnoses / yr
 - <50% result in complete lysis with anticoagulation alone
 - Many patients not offered lytic therapy and are left with chronic occlusions

Chronic Venous Occlusions: Surgical Management

- Venography with Intravascular Ultrasound
- Percutaneous venous recanalization with angioplasty and stenting

Chronic Venous Occlusions: Interventional Management

- Technical Considerations:
 - Imaging
 - Access
 - Basic concepts
 - Controversial Issues

- Emerging Technology:
 - Optimal stent design and current products
 - Crossing Tools
 - Novel devices
Chronic Venous Occlusions

Technical Considerations: Imaging

- **Duplex Ultrasound**
 - Mainstay of preop imaging
 - B-mode: patency, chronic mural changes
 - Waveform analysis: upstream occlusions
 - Highly accurate and sensitive for infra-inguinal venous findings

- **Axial Imaging with MRV and CTV**
 - External compression syndromes
 - Iliocaval occlusions: identifies reconstitution point
 - Infrainguinal: mapping of PFV vs FV access
 - Identification of congenital anomalies

Respiratory Phasicity
- Continuous flow pattern

Chronic Venous Occlusions

Technical Considerations: Access

- **Access:**
 - Guided by preop / on-table duplex imaging
 - Access in area of good inflow (ie. mid FV)
 - Dual access (IJ, femoral, bifemoral)

Access:
- IJ Access
- CFV Access

Chronic Venous Occlusions

Technical Considerations during Treatment

- **Basic Concepts:**
 - Correct all significant disease
 - Good inflow to good outflow is essential
 - Stents are required for recanalized lesions; angioplasty alone is insufficient.
 - IVC filters should be removed
Presence of IVC Filters

- Increased risk of recurrent DVT

Recurrent DVT rate at 8 year follow-up:
- No filter: 27.5%
- Indwelling filter: 35.7%

(p=0.042)

Laser-Assisted Co-axial Sheath Dissection Technique

- Spectranetics 14Fr SLS II Laser Sheath Lead Extraction System
- 14F 45cm Cook Performer Sheath

- Advantages:
 - Additional sheath rigidity
 - Photoablative rx of intimal hyperplastic tissue

Chronic Venous Occlusions

Technical Consideration during Treatment

- Controversial Issues:
 - Stenting the CFV (across the inguinal ligament)
 - Stenting of femoral and popliteal veins
 - Anticoagulation / antiplatelet management

Stenting across Inguinal Ligament

- Stent fractures and restenosis is not the same in the CFV as it is in the CFA
- Stenting across the inguinal ligament is less of a concern than leaving untreated stenotic disease

Stenting Infrainguinal Femoral and Popliteal Veins

- DVT 3 months ago with occlusion of femoral and popliteal veins
- Wire traversing femoral vein
- Axialization of flow to profunda
- After 24 hrs of EKOS assisted lysis and balloon angioplasty

54 month Secondary Patency

Non-thrombotic pts = 100%
Thrombotic pts = 84%
Stenting Infrainguinal Femoral and Popliteal Veins

Healthy “inflow” segment of popliteal vein

Patient now > 3 years s/p intervention and remains patent and free from venous symptoms

Chronic Venous Occlusions: Emerging Technology: Stent Design

What are the Characteristics of the Ideal Stent?

- Lacking radial force, especially at ends
- Rigid design with poor conformability

Ideal Venous Stent Properties

- High crush resistance
- Uniform crush resistance
- Low Profile
- Conformability
- Wide range of lengths/diameters
- Large diameters

Wallstent

- 14-24mm Diameter
- 60-120mm length
- 10Fr
- Braided stainless steel

Wallstent (Boston Scientific)

- 12-18mm Diameter
- 60-150mm length
- 10Fr
- Laser-cut Nitinol

Sinus-Venous (Optimed)

- 14-16mm Diameter
- 60-140mm length
- 7Fr
- Laser-cut Nitinol

Vici Venous (Veniti)

- 12-18mm Diameter
- 60-150mm length
- 10Fr
- Laser-cut Nitinol

Zilver Vena (Cook)

- 14-16mm Diameter
- 60-140mm length
- 7Fr
- Laser-cut Nitinol

Potential for increased radial force (including at ends), better conformability, with lower profile device delivery system in diameters appropriate for venous applications

Chronic Venous Occlusions: Emerging Technology: Crossing Tools

Basic Tools:

- Stiff wires (0.035, 0.018)
- Support catheters
- Long sheaths (coaxial use w/ support cath)
- Long balloons

Technique: Escalating strategy of increasingly supportive wire platforms and coaxial sheath / support catheters, followed by sequential dilatation and stenting.
Chronic Venous Occlusions:
Emerging Technology: Crossing Tools

Cook TriForce Peripheral Crossing System
- Co-axial support sheath/catheter
- Curved / Straight catheter & sheath
- 55cm and 90cm lengths in 0.035in

Right IJ and bilateral common femoral vein approach
- Confirmation of true lumen re-entry

Conclusions

- Adherence to a few basic principles can result in effective percutaneous recanalization of patients with venous occlusive lesions

- The tools and techniques for venous intervention continue to evolve and allow increasing numbers of patients to be effectively treated.