Impact of Caval Occlusion on Thrombolysis for IFDVT

Rabih A. Chaer MD, MSc
Professor of Surgery
Residency Program Director
Site chief, Presbyterian campus
Division of Vascular Surgery, UPMC

Veith symposium 2015

DISCLOSURES

• Nothing to disclose

Background

• IVC thrombosis co-exists in 22% of IFDVTs
 – IFDVT proximal propagation
 – In-situ (congenital anomalies or ext. compression)
• IVC filter rate of thrombosis: 5-30%
• IVC thrombosis has higher risk for PE and PTS

• CDT & PMT are increasingly used for IFDVT
 – Early thrombus removal and symptom relief
 – Maintenance of valvular competence
 – PTS reduction
• IVC thrombosis indicates a higher clot burden
 • Its impact on lysis outcomes is poorly defined

Comerota AJ. J Vasc Surg 2012

Objectives

• Compare outcomes of patients undergoing thrombolysis for acute IFDVT with and without IVC involvement

Presented at the 2015 VAM

Methods

• Retrospective Study
 – Demographics, risk factors, intraprocedural data
 – Outpatient clinical records, venous studies
 – Two groups: IVC vs no IVC involvement
• Endpoints
 – Clinical Success (≥50% lysis & 30d recurrence free)
 – Long term US patency (anatomic failure)
 – Post-thrombotic syndrome (Villalta ≥5)
Study Population

- 102 patients / 127 limbs
- Mean age 48.9 ±16.0 / 53% females / 78% Left DVT
- 70% were treated with combined PMT & CDT
- 20% received a single session PMT
- 46 Patients had thrombus extending to the IVC
 - 54% up to the renal veins
 - 50% associated with a thrombosed IVC filter

Baseline Data

<table>
<thead>
<tr>
<th></th>
<th>Non Cava Involvement</th>
<th>Cava Involvement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (patients)</td>
<td>56</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>57 ± 15.6</td>
<td>60 ± 16.2</td>
<td>.283</td>
</tr>
<tr>
<td>Female gender</td>
<td>36 (64.3%)</td>
<td>18 (38.4%)</td>
<td>.011</td>
</tr>
<tr>
<td>Days to lysis</td>
<td>11 ± 9.9</td>
<td>9.2 ± 9.3</td>
<td>.183</td>
</tr>
<tr>
<td>>14 days to lysis</td>
<td>20 (35.7%)</td>
<td>10 (21.7%)</td>
<td>.123</td>
</tr>
<tr>
<td>Phlebitis</td>
<td>7 (12.5%)</td>
<td>9 (19.6%)</td>
<td>.329</td>
</tr>
<tr>
<td>Hypercoagulibility</td>
<td>17 (30.4%)</td>
<td>19 (41.3%)</td>
<td>.250</td>
</tr>
<tr>
<td>Malignancy</td>
<td>8 (14.3%)</td>
<td>8 (17.4%)</td>
<td>.668</td>
</tr>
<tr>
<td>Previous DVT</td>
<td>13 (22.3%)</td>
<td>19 (41.3%)</td>
<td>.050</td>
</tr>
<tr>
<td>Clinical PE</td>
<td>6 (10.7%)</td>
<td>7 (15.2%)</td>
<td>.497</td>
</tr>
<tr>
<td>Indwelling IVC filter</td>
<td>3 (5.4%)</td>
<td>28 (60.9%)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Procedural Data

<table>
<thead>
<tr>
<th></th>
<th>Non Cava Involvement</th>
<th>Cava Involvement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (patients)</td>
<td>56</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>PMT</td>
<td>82.1%</td>
<td>97.8%</td>
<td>.011</td>
</tr>
<tr>
<td>Iliac Stenting</td>
<td>41.3%</td>
<td>62.5%</td>
<td>.033</td>
</tr>
<tr>
<td>Total IPA (mg)</td>
<td>24.8±12.5</td>
<td>26.3±12.8</td>
<td>.403</td>
</tr>
</tbody>
</table>

Post Procedure Outcomes

- No Difference between Groups

<table>
<thead>
<tr>
<th></th>
<th>Non Cava Involvement</th>
<th>Cava Involvement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Success</td>
<td>89.3%</td>
<td>87.3%</td>
<td>.729</td>
</tr>
<tr>
<td>Clinical Success</td>
<td>85.7%</td>
<td>87.3%</td>
<td>.781</td>
</tr>
</tbody>
</table>

- 1 Major Bleeding Event
- 8 Minor Bleeding Events
- 2 Deaths

Freedom from DVT Recurrence

Valve Reflux
Post Thrombotic Syndrome

- Caval thrombosis does not impact
 - Technical and 30-day clinical success of thrombolysis
 - DVT recurrence
- Thrombosed IVC Filters should be anticipated to have higher failure rates
- Caval thrombosis predicts lower rates of PTS
 - Protective effect of a large vessel clearance
 - Iliofemoral segments may contribute more to postthrombotic morbidity when compared to iliocaval segments

Conclusions