Appropriate Use of Venous Imaging and Analysis of The D-Dimer/Clinical Probability Testing Paradigm In The Diagnosis And Location of Deep Venous Thrombosis

Albeir Mousa MD, FACS, RVPI, MPH, MBA
Professor of Vascular Surgery
West Virginia University, Charleston Division

VEITH Annual Symposium the 45th

Background

• Each year, DVT affects 900,000 in the US
• How to diagnose DVT:
 - Clinical exam
 - Wells Criteria score
 - D-Dimer (DD) level
 - Venous Duplex Ultrasound (VDU)

VEITH Annual Symposium the 45th

Objective

• Primary objective was to determine if the combination of DD and Wells clinical probability could safely exclude DVT.
• Secondary objective was to determine if DD values could accurately predict magnitude and location of DVT.

VEITH Annual Symposium the 45th

Are we using D-Dimer Enough?

• Recent surveys indicate that D-dimer assays are often not used appropriately for the exclusion of VTE in clinical practice

VEITH Annual Symposium the 45th

Is DD Sensitive?

• Studies have demonstrated DD to be a sensitive and accurate assay that correlates with presence and volume of thrombus
 – ELISA (94% sensitivity and 45% specificity),
 – Latex (89% and 55%)

VEITH Annual Symposium the 45th

Disclosures

• None

VEITH Annual Symposium the 45th
Usefullness of D- Dimer

- Negative D-dimer test by the rapid ELISA method is as diagnostically useful as a negative CT or a negative VDU in excluding PE and DVT

Statistical Analysis

- Receiver Operator Characteristic curve (ROC) was used to find cut-off points for DD to predict DVT.
- Sensitivity, specificity, positive and negative predictive values were used for comparing accuracy of cut-off points.
- A ‘p’ value of 0.05 or less was considered significant.

Methods

- Retrospective study conducted over 4 consecutive years, 2012-2015.
- 1909 patients with limb swelling were evaluated for DVT.
 - 239 patients (12.5%) were excluded due to:
 - serial repeat visits/follow ups
 - screened for surveillance
 - had a previous history of DVT/PE

Demographics

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>Avg. Age</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>739</td>
<td>44.3</td>
<td>61.6</td>
<td>46.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Females</td>
<td>931</td>
<td>55.7</td>
<td>62.5</td>
<td>46.0</td>
<td>79.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Median value</th>
<th>25th</th>
<th>75th</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Dimer</td>
<td>2.02</td>
<td>0.86 mg/L</td>
<td>4.3 mg/L</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>D-Dimer</th>
<th>DVT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>839</td>
<td>50.2</td>
<td>115</td>
<td>13.7</td>
</tr>
<tr>
<td>Moderate</td>
<td>752</td>
<td>45.0</td>
<td>79</td>
<td>10.5</td>
</tr>
<tr>
<td>High</td>
<td>79</td>
<td>4.7</td>
<td>8</td>
<td>10.1</td>
</tr>
<tr>
<td>P-value</td>
<td>0.127</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1670</td>
<td>100.0</td>
<td>202</td>
<td>124.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>D-Dimer</th>
<th>No DVT</th>
<th>Proximal</th>
<th>Distal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>0.1 - 0.59 (mg/L)</td>
<td>48</td>
<td>94.1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>0.60-1.2 (mg/L)</td>
<td>48</td>
<td>94.1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>≥ 1.3 (mg/L)</td>
<td>100</td>
<td>80.0</td>
<td>18</td>
<td>14.4</td>
<td>7</td>
<td>5.6</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
<td>86.1</td>
<td>18</td>
<td>8.9</td>
<td>10</td>
<td>5.0</td>
</tr>
</tbody>
</table>

P= 0.007
Results

- **26/202** DD values were in the normal range 0.1-0.59 mg/L, all negative for DVT (100% sensitive).
- **51/202** DD values were slightly elevated from 0.6-1.2 mg/L, only 3 DVTs were recorded, all of them Distal.
- **685** Patients with Wells scores <1, no D-dimer, and negative for DVT
- **Thus 762 patients of the sample data did not need to be sent for a stat VDU, but could have instead been treated on an outpatient basis.**

Testing Cost for 762 Patients

- **Cost of 762 ultrasounds:** $1,186,434.00
- **Cost of 762 DD tests:** $138,684.00
- **Potential savings over 8 months include at least $1,047,750.00**

Conclusion

- **DD is being under-utilized in patients suspected of having DVT.**
- **Patients with low or moderate clinical suspicion for DVT, should receive DD.**
- **Elevated DD >1.2 mg/L raises concern not only about presence but also about the volume and proximity of DVT.**
- **Our findings can be used to reduce unnecessary VDU testing and cost to patients and hospitals.**