How can we evaluate flow?
When is it good enough?

Kathleen Gibson, MD
Lake Washington Vascular Surgeons, Bellevue, WA

VEITH Symposium
New York, New York
November 16, 2018

Dr. Gibson is a consultant for Medtronic, Vascular Insights, Vesper, and BTG and receives current research support from Medtronic, AngioDynamics, Bayer, and Vascular Insights. She is in the speaker's bureau for Pfizer/Bristol Myers Squibb.

What do we do currently to evaluate flow after procedure?

- "Eyeball" it
- Look for absence of collaterals
- Look at speed of contrast emptying
- Good enough when...
 - Stent stays open
 - Patient symptoms improve/resolve

Can we obtain a more objective measure?

How can we apply flow dynamics to the venous system?

It’s not that simple!

Fluid Mechanics: Poiseuille’s Law

\[Q = \frac{\Delta P \pi r^4}{8 \eta l} \]

- \(Q \) = volumetric flow
- \(\Delta P \) = change in pressure
- \(r \) = pipe or vessel radius
- \(\eta \) = viscosity
- \(l \) = pipe or vessel length

This assumes:

- Tube is straight
- Tube is circular
- Radius is constant
- Flow is laminar
- Fluid is Newtonian
Newtonian v. Non-Newtonian fluids

- Newtonian fluids that have a constant viscosity for any given temperature and pressure, and viscosity that does not change with shear
- Non-Newtonian: viscosity changes with shear
 - Rheopectic: viscosity increases with shear
 - Thixotropic: viscosity decreases with shear (ketchup, blood, Lahar)

Bottom line of this physics review:

- Simple physics formulas for straight tubes and simple fluid really don’t work for veins
- Would need to make a new model for every patient because of the high variability
- Can we use surrogate marker such as ultrasound derived flow volume to predict iliac vein stent failure?
- Currently we are using flow volumes in dialysis access to predict adequacy...let’s learn more about this application in veins!

What do we do to maximize flow?

- Radius → use appropriately sized stents
- Pressure gradient → cover all disease, angioplasty to desired size, look for collaterals
- Viscosity → anticoagulation?
- Length → shorter lesions do better (you need to cover what you need to cover)

Volume Flow-duplex scanning

Can be calculated based on velocity and vessel diameter measurements obtained by duplex scanning

\[Q = n \times A \times 60s = n \times \frac{p(d^3)}{4} \times 60s \]

- \(Q \): Volume flow (mL/min)
- \(n \): Time-averaged velocity across the vessel lumen (cm/s)
- \(A \): Cross-sectional area of vessel at site of measurement (cm²)
- \(d \): Lumen diameter (cm)

Volume Flow Measurement of DAF by Duplex

- Ogawa, et al. JVS 2002
- Measured at 30 degree reverse trendelenberg, 60 degree angle to vessel, 40 seconds
- Mean values:
 - CFV 360 cc/min
 - FV 147 cc/min
 - GSV 38cc/min

Flow volumes in 25 healthy volunteers in the lower extremity

- Slide courtesy of Mariah Elliott BS, RVT, RPHT, and Dr. Gene Zierler, Univ. Wa
Volume Flow Examples:

- Good
 - Diameter
 - Doppler angle
 - Sample volume
 - Mean tracker
 - Flow pattern
- Avoid: turbulence, branching, curving, irregular shape

Slide courtesy of Mariah Elliott BS, RVT, RPhS, and Dr. Gene Zierler, Univ. Wa

Flow volume data from the University of Washington- flow volumes in patients with iliac stents

<table>
<thead>
<tr>
<th>Segment</th>
<th>n</th>
<th>Flow volm (mean) ml/min</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left common iliac</td>
<td>31</td>
<td>707</td>
<td>271-1238</td>
</tr>
<tr>
<td>Left external iliac</td>
<td>14</td>
<td>813</td>
<td>441-1318</td>
</tr>
<tr>
<td>Left common femoral</td>
<td>7</td>
<td>517</td>
<td>216-955</td>
</tr>
</tbody>
</table>

Are there flow volumes that predict failure? Next steps

- Establish intra and interrater reliability of flow volumes in normal and stented patient
- Measure flow volumes before and after intervention
- Prospectively follow patients to see if there is a flow volume (absolute) or change in flow volume that can assess success or failure of iliac stent
- Understand that finding a perfect flow model will be challenging, finding a reliable surrogate marker may be possible.