Evidence Summary on the Pathophysiology of Varicose Veins

Benjamin N Jacobs, MD
Thomas W. Wakefield, MD
Section of Vascular Surgery
University of Michigan
Veith Symposium 2018
New York, NY

No Disclosures

Pathophysiology of Varicose Veins

- The development of varicose veins appears to result from the complex interaction of a number of environmental, hemodynamic, and cellular processes.
- These can be roughly categorized as:
 - Hemodynamic Factors
 - Intrinsic Vein Wall Factors

Hemodynamic Factors

- Ascending Theory
 – Caudally located venous shunts overfill varicosities, causing a hydrostatic pressure column that prevents drainage of superficial veins.
- Descending Theory
 – Intra-abdominal pressure is transmitted caudally, causing dilation of superficial veins and valvular incompetence.

Hemodynamic Factors

- Valve incompetence is common.
 – >75% of patients demonstrate GSV reflux
 – >50% demonstrate segmental reflux pattern
- Known environmental risk factors suggestive of hemodynamic component in VV development:
 – Obesity
 – Multiparity
 – Occupations associated with prolonged standing
Vein Wall Factors

- Hemodynamic alterations cannot entirely explain VV pathogenesis:
 - Heritable component is clearly demonstrated
 - VV can be found caudal to competent valves.
- Weak wall hypothesis:
 - Local vein wall abnormalities precede valvular incompetence.
- Local vein wall factors likely contribute to VV:
 - Hypoxia
 - Hyperplasia and apoptotic dysregulation
 - Extracellular matrix abnormalities

Histologic Abnormalities

- Evidence of Altered Histologic Phenotype:
 - Intimal and SMC hyperplasia
 - Skip lesions
 - Areas of normal vein between ectatic areas.
 - Gross appearance either thickened and fibrotic or thinned and weak.
- Apoptosis and cellular turnover are decreased in VV segments.
 - Pro-apoptotic BAX and PARP are decreased in VV

Extracellular Matrix Abnormalities

- Studies have shown both increases and decreases in collagen and elastin
 - Likely due to skip lesions, and the difficulty in comparing across specimens.
- Disorganized ECM likely more important than total amount or ratio of Collagen:Elastin
 - Collagen fibers don’t line up straight
 - Inappropriately intercalated between SMCs
Extracellular Matrix Abnormalities

• Matrix Metalloproteinases
 – Common protease enzymes play important roles in:
 • ECM turnover
 • Tissue structural integrity
 – Clear role in the pathogenesis of Arterial Aneurysms
• Evidence is conflicting:
 – Some studies show increases in MMP-9
 – Others have shown no difference by zymography

Hyperplasia and Cellular Dysfunction

• Activation of Delta Like Ligand and Hey-2 induce SMC hyperplasia in VV1.
• Inappropriate intercalation of ECM within the SMC layer reduces contractile function.
• SMC responsiveness to vasoconstrictive stimuli is decreased2:
 • Angiotensin II responsiveness decreased
 • Phenylephrine responsiveness decreased

Local Hypoxia

• Data are conflicting regarding whether oxygen tension is in fact decreased in VV segments
• Vascular Adhesion Molecules are upregulated in hypoxia3:
 – Inflammatory cell infiltration
 – Leading to disordered ECM turnover
• Hypoxia may lead to activation of HIF-1α
 – Downstream effects on:
 • Apoptosis
 • ECM Turnover
 • Angiogenesis
 – HIF-1α is upregulated in VV vessel segments2.

Conclusions

• Complex and multifactorial
• It remains unclear whether local wall dysfunction leads to valvular incompetence or whether the reverse is true.
• Likely, VV results from imbalances in several of these factors.
Thank you