Well-Recognized Venographic Signs Of Significant Iliac Vein Compression In Asymptomatic Young Volunteers

May Thurner Anatomy

- Anatomical variant with a prevalence 22-32% in cadaveric research. (1,2)
- General population unknown prevalence

Disclosures:

- **Consultancies:**
 - Angiocare
 - Medi
 - OptiMed
 - Vascular Insights
 - IQ Brand Group
- **Research funds:**
 - BTG
 - OptiMed
 - Olympus
 - Bayer
 - AB medica
 - Angiocare
 - Philips
 - Cook
 - Boston Scientific

Radiographic signs

- >50% compression of the common iliac vein (CIV)
- lumen deformity
- translucency: a visual impression of an overriding common iliac artery on multi-plane angiography
- presence of collateral veins on angiography

Methods

- Twenty participants were voluntarily included
 - between the ages of 18 and 45 years
 - Owing to the higher prevalence of May-Thurner compression: more females
- **Exclusions:**
 - A CESS score of 2 or higher
 - A CESS score of 3 or higher
 - arterial disease
 - history of vascular disorders
 - history of deep venous thrombosis
 - surgery to the groin, lower limb, or abdomen.
 - Active malignancy
 - allergy to lidocaine
 - allergy to contrast agents
 - Pregnancy (tested in all females)

• Because around 25% of treated patients do have a patent stent but no clinical improvement due to ??
 - Misleading clinical signs ?
 - Wrong radiographic signs

• We performed a study:
 - The aim of the current study was to assess the prevalence of angiographic signs of iliac vein compression in a group of healthy participants
 - To analyze the opinions for treatment of iliac vein compression in a selected group of clinicians.
Angiography

- evaluated for
 - >50% compression of the CIV (1 item),
 - lumen deformity of the CIV (1 item),
 - translucency: visual impression of an overriding common iliac artery (1 item)
 - collateral flow

- When only one of these factors was present, an adequately sized balloon (20x22 mm 40 mm, MaxiLD, Cordis, Johnson & Johnson, Diegem, Belgium) was inflated to occlude the CIV and search for collaterals

Results

<table>
<thead>
<tr>
<th></th>
<th>Without balloon occlusion</th>
<th>With balloon occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifteen (94%) females showed at least two angiographic signs of iliac vein obstruction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None of the three male participants showed any angiographic sign of iliac vein obstruction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Following balloon occlusion, all showed collaterals.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survey

- 30 vascular specialists
- 16 would stent a >50% CIV compression
- 23 considered collaterals to be the most typical angiographic sign indicating a significant venous obstruction.
- 15 would stent when collaterals were seen in combination with a 30 to 50% CIV compression
- 19 were not able to use IVUS
- 1 used solely IVUS with a 30 to 50% CIV compression as an indication for stenting

Table 1. Demographics of included subjects.

<table>
<thead>
<tr>
<th>Age (Median, IQR)</th>
<th>21 (20–22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Females, N (%)</td>
<td>16 (60)</td>
</tr>
<tr>
<td>Males, N (%)</td>
<td>4 (30)</td>
</tr>
<tr>
<td>Venous history, N (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Smoking, N (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Abdominal wall collateral, N (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>CEAP</td>
<td></td>
</tr>
<tr>
<td>C1, N (%)</td>
<td>16 (60)</td>
</tr>
<tr>
<td>C2, N (%)</td>
<td>4 (20)</td>
</tr>
<tr>
<td>> C2, N (%)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

VCSS

0–1, N (%) | 20 (100)
2–3, N (%) | 0 (0)

N = number; CEAP = Clinical, anatomic, anatomic; and pathophysiologic; VCSS = Venous Clinical Severity Score.
Conclusion

- Because a high percentage of generally accepted signs of a significant iliac vein obstruction on venography are identified in healthy young subjects again confirms that imaging alone is not enough to select patients for stenting.

- Patient selection remains therefore a major challenge:
 - Depending on clinical signs and symptoms
 - Anatomical findings:
 - Depending on angiographic findings
 - Depending on echocardiography
 - Depending on menisci

- Future hemodynamical measurements:
 - 24 hour femoral vein pressure measurements
 - 24 hour non-invasive flow measurements.