VEITH 2018

VEITH 2018

Disclosures

Specific Disclosures
None

General Disclosures
None

Chest VTE Guidelines

The 2016 CHEST Antithrombotic Therapy for Venous Thromboembolism Disease guidelines do not mention ECMO in the management of massive PE

Indications for ECMO

- Acute Respiratory Distress Syndrome
- Hypercapnic Respiratory Failure
- Lung Transplant Candidates

Contraindications

Relative Contraindications
- High-pressure ventilation (plateau airway pressures over 30 cm of water) for more than 7 days
- High FiO2 requirements (over 80% for more than 7 days)
- Limited vascular access
- Inability to accept blood products
- Any condition or organ dysfunction that would limit the likelihood of overall benefit from ECMO, such as severe, irreversible brain injury or untreatable metastatic cancer

Absolute Contraindications
- Contraindication to anticoagulation
- ECMO as bridge to lung transplantation if transplantation will not be considered

Murray Score

<table>
<thead>
<tr>
<th>Murray Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2/FiO2 on 100% O2</td>
<td>≥40</td>
<td>30-49</td>
<td>20-29</td>
<td>10-19</td>
<td><10</td>
</tr>
<tr>
<td>CHA2DS2-VASc Score</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PEEP (cmH2O)</td>
<td>≤5</td>
<td>6-8</td>
<td>9-11</td>
<td>12-14</td>
<td>≥15</td>
</tr>
<tr>
<td>Cardiac output index (mL/kg/min)</td>
<td>≤30</td>
<td>30-70</td>
<td>70-115</td>
<td>115-170</td>
<td>≥170</td>
</tr>
</tbody>
</table>
Extracorporeal Life Support Organization (ELSO) guidelines:

- Patients with ARDS and a Murray Score of 3-4 may be considered for ECMO cannulation in the correct clinical setting.
- Patients with a Murray Score >2 could be considered for transfer to a center with ECMO capabilities.

PE: Indicators of Poor Outcome

ESC criteria (based on consensus; lack of validation)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk: Cardiovascular shock or persistent hypotension</td>
<td>> 30 %</td>
</tr>
<tr>
<td>Intermediate risk: Lab (troponin, BNP) ging RV dysfunction</td>
<td>1-30 %</td>
</tr>
<tr>
<td>Low risk: normal labs (troponin, BNP); normal RV function</td>
<td>< 1 %</td>
</tr>
</tbody>
</table>

Roles for ECMO in PE

ECMO is a means of improving oxygenation and clearing CO₂

Indication in PE: Progressive hypoxemia or acidosis with intact RV function, unresponsive to best medical treatment

Roles for ECMO in PE

ECMO is a means of unloading the right ventricle and supporting systemic circulation in massive PE

Indication in PE: Progressive right ventricular failure associated with pulmonary arterial hypertension, unresponsive to medical treatment

Veno-venous

Veno-arterial
Roles for ECMO in PE
- Stabilization
- Bridging / Temporizing
- Recovery

Massive PE

Algorithm for treatment of patients with massive pulmonary embolism.

Cardiac Related Death
All-Cause Related Death
Outcomes After Surgical Pulmonary Embolectomy for Acute Pulmonary Embolus: A Multi-Institutional Study

Massive PE
- Overall 12% in-house Mortality
- 24%

Sub Massive PE
- 9%

UT VASCULAR

Outcomes of Pulmonary Embolus for Acute Pulmonary Embolism

MACE was as high as 27.3%

Without ECMO
- 30 day Survival
- 17.2%

With ECMO
- 41.4%

P=0.043

Additional Role for Cardiopulmonary bypass – Surgical Thrombectomy
- Stabilization for OR
- CPB for surgery
- Recovery of RV or Lungs

UT VASCULAR
Confirmed PE
- Minor / Stable PE: Low Risk
- Submassive PE: Intermediate Risk
- Massive PE: High Risk

Anticoagulation
- Catheter-directed thrombolysis
- Intravenous Bolus thrombolysis

Possible Surgical Embolectomy
- Anticoagulation
- Retrievable IVC Filter

SOUTH TEXAS CENTER FOR VASCULAR CARE
Literature Review
Period between 1995 and 2014
- 271 patients
- 73% survival

Extracorporeal membrane oxygenation in acute massive pulmonary embolism: a systematic review
HD Younias, P. voiced, and A. Yavuzer

SURVIVAL
69%

Table 2. Definitive treatment for PE and survival

<table>
<thead>
<tr>
<th>Definitive Treatment</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHOM + Surgical embolectomy</td>
<td>9 (49.2%)</td>
</tr>
<tr>
<td>ECHOM + Catheter embolectomy</td>
<td>2 (40%)</td>
</tr>
<tr>
<td>ECHOM + Thrombolysis</td>
<td>7 (41.7%)</td>
</tr>
<tr>
<td>ECHOM + Surgical embolectomy + Thrombolysis</td>
<td>2 (100%)</td>
</tr>
<tr>
<td>ECHOM + Catheter embolectomy + Thrombolysis</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>ECHOM + Catheter embolectomy + Catheter embolectomy + Thrombolysis</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>ECHOM + Catheter embolectomy + Thrombolysis</td>
<td>8 (46.7%)</td>
</tr>
<tr>
<td>ECHOM alone</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

FE: pulmonary embolism; ECHOM: extracorporeal membrane oxygenation.

VA ECMO

UT VASCULAR

SOUTH TEXAS CENTER FOR VASCULAR CARE
Life-threatening massive pulmonary embolism rescued by venoarterial-extracorporeal membrane oxygenation
Filippo Cori,1,2 Guillaume Lefebvre,1 Nicolas Belchat1, Guillaume Hetkinan,2 Ania Nieszkowski,2 Jean-Louis Tourelle1,2 Charles-Edouard Levy,1 Pascal Lepirme,1 Jean Chastre,2 Alain Cambier3 and Matthias Schmidt4,5,6

Critical Care

RESEARCH

Open Access

UT VASCULAR

SOUTH TEXAS CENTER FOR VASCULAR CARE
17 high-risk PE patients
- Median age 51 (range 18-70) years, SAPS II 78 (45-95)
- VA-ECMO for 4 (1-12) days.
- 15 (82%) patients with pre-ECMO cardiac arrest,
 7 (41%) were cannulated during CPR,
 8 (47%) underwent pre-ECMO thrombolysis.

UT VASCULAR
The questions answered

Thrombectomy
- **WHEN**: Submassive PE with RV dysfunction
- **HOW**: Open Chest
- **WHY**: RV support

ECMO
- **PREOP**
- **POST OP**: CPB, O₂ support

VA ECMO
- **WHEN**: Pre-op, Peri-op, Post-op
- **HOW**: Venous
- **WHY**: RV support

VV ECMO
- **WHEN**: Pre-op, Peri-op, Post-op
- **HOW**: Arterial
- **WHY**: Venous, O₂ Support

Table 3: Studies on patients with acute, massive, high-risk PE on VA ECMO support included in the systematic review.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Inclusion criteria (n)</th>
<th>+ ECMO</th>
<th>Mechanism of RV failure</th>
<th>ECMO support</th>
<th>Length of ECMO support (days)</th>
<th>Length of hospital stay (days)</th>
<th>Survival (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melby et al. (ES) 1994-1999 7</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>Rigo et al. (BE) 1998-2005 10</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>Scheller et al. (US) 1988-1996 6</td>
<td>6</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>Paul et al. (BE) 2006-2011 5</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>Paul et al. (US) 2006-2011 6</td>
<td>6</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
</tbody>
</table>

Figures:
- **Fig. 1**: Flow chart. (RV = right ventricle, VA = veno-arterial, ECMO = extracorporeal membrane oxygenation.)
- **Fig. 2**: Flow chart. (RV = right ventricle, VA = veno-arterial, ECMO = extracorporeal membrane oxygenation.)

South Texas Center for Vascular Care

Critical Care

Open Access

South Texas Center for Vascular Care

90-day survival: 47%.