How to Prevent and Treat Spinal Cord Ischemia (SCI) with Endovascular TAAA Repairs

Salvatore T. Scali, M.D., F.A.C.S.
Associate Professor of Surgery
Division of Vascular Surgery and Endovascular Therapy
University of Florida College of Medicine

INTRODUCTION

- Spinal cord ischemia (SCI) is a devastating complication after branched/fenestrated endovascular aortic repair (B/FEVAR)
 - 5-31% incidence
- Several interventions described to ↓ SCI events
 - E.g. Spinal drains, permissive BP goals, medications
- SCI patients have poor long-term survival [~30-50% 1-year]

SCI IMPACT ON SURVIVAL AFTER TEVAR

N = 9124

<table>
<thead>
<tr>
<th>Predictor</th>
<th>HR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA Class (per level)</td>
<td>1.8</td>
<td>1.4-2.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior aortic/iliac aneurysms</td>
<td>1.8</td>
<td>1.2-2.7</td>
<td>0.008</td>
</tr>
<tr>
<td>Non-occlusive case</td>
<td>1.6</td>
<td>1.2-2.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.6</td>
<td>1.1-2.6</td>
<td>0.03</td>
</tr>
<tr>
<td>COPD</td>
<td>1.4</td>
<td>1.0-1.8</td>
<td>0.02</td>
</tr>
<tr>
<td>Perioperative creatinine > 1.7mg/dL</td>
<td>1.4</td>
<td>1.2-1.8</td>
<td>0.06</td>
</tr>
<tr>
<td>Use of intravascular ultrasound</td>
<td>1.3</td>
<td>1.1-1.7</td>
<td>0.04</td>
</tr>
<tr>
<td>Female gender</td>
<td>1.2</td>
<td>1.1-1.7</td>
<td>0.06</td>
</tr>
<tr>
<td>Non-white race</td>
<td>1.2</td>
<td>1.1-1.7</td>
<td>0.06</td>
</tr>
<tr>
<td>Max aneurysys diameter per mm increase</td>
<td>1.0</td>
<td>1.0-1.06</td>
<td>0.09</td>
</tr>
<tr>
<td>Age per year increase</td>
<td>1.0</td>
<td>1.0-1.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>

SCI AND COMPLEX TAAA REPAIR

- No Level 1 evidence supporting strategies to ↓ SCI
 - SCI sequelae likely ↓ evidence-based threshold
- Care bundles highly successful in prevention of neonatal sepsis, VAP, CLABSI
- No descriptions of care bundles to prevent SCI after B/FEVAR that encompass all phases of care

DISCLOSURES

- None
PREVENTING SCI AFTER F/BEVAR

• CSF drainage
• Early lower extremity reperfusion
• Staged repairs
• Preservation of collateral networks (subclavian, hypogastric, lumbar vessels)
• Neuromonitoring (intraoperative motor evoked and somatosensory evoked potentials)
• Pharmacologic intervention (e.g. vasopressors, steroids, free radical scavengers, receptor antagonists, etc.)
• Enhancing oxygen delivery (cardiac function, oxygen carrying capacity)
• Mitigation of ischemia-reperfusion (inflammatory modulators, oxidative stress)

SPINAL CORD ISCHEMIA PROTOCOL

PRE-OPERATIVE MANAGEMENT
Clinic
• Patient education about risk
• Continue chronic β-blockers
• Withhold ACEI/ARB
• Statin initiation and/or continuation
Preoperative Holding
• Naloxone Infusion
• Spinal drain

INTRA-OPERATIVE MANAGEMENT
• MAP > 90 mmHg [Aline]
• Hemoglobin > 9 gm/dL
• Steroid bolus (methylprednisolone)
• Passive Hypothermia
• Mannitol PRN
• Judicious morphine/dilaudid use
• Glucose control (insulin gtt)

POST-OPERATIVE MANAGEMENT
• Q2h Neuro-checks in SICU
 - Spinal drain removed after 36-48hr
 - Naloxone drip discontinued at 48hrs
 - Glucose control (insulin gtt; FSBG < 150)
 - MAP goals relaxed ~48hr
 - Oral home BP medications titrated

SPINAL CORD ISCHEMIA PROTOCOL

MANAGEMENT OF SUSPECTED SCI EVENT

Suspected SCI Event
• Spinal drain manipulation
 • Raise MAP goal to >100
 • Raise Hgb/Hct goal to 10/30
 • Steroid Bolus
 • Stroke evaluation

No Improvement
• Attempt to clamp spinal drain 24-48hr after resolution of symptoms
• Hold anti-hypertensives
• Maintain MAP/Hct goals until return to clinic
• Continue protocol for 72 hours
• Spinal cord rehabilitation

All Patients

Incidence of Any F/BEVAR SCI Before and After Implementation of Protocol

Pre Post
13% 3% * p = .007
19% 4% * p = .004

N=223 N=70

CONCLUSIONS

• SCI after F/BEVAR is devastating
• The most vulnerable patients can be identified preoperatively to improve resource utilization
• Multiple interventions can be undertaken to mitigate the risk and/or subsequent development of SCI
• Utilization of a bundled approach that intervenes at all phases of patient vulnerability may offer a way to further reduce the impact of SCI after complex endovascular TAAA repair
THANK YOU