Value of Multiple Short Stents For Treating Fempop Long Lesions: Better Than a Full Metal Jacket? The Locomotive Trial

Faculty Disclosure

Thomas Zeller, MD

For the 12 months preceding this presentation, I disclose the following types of financial relationships:

- Consulted for: Boston Scientific Corp., Cook Medical, Gore & Associates, Medtronic, Spectranetics, Veryan
- Research, clinical trial, or drug study funds received from: 480 biomedical, B. Braun, Bard Peripheral Vascular, Veryan, Biotronik, Cook Medical, Gore & Associates, Abbott Vascular, Medtronic, Philips, Terumo, TriReme, Veryan, Shockwave
- Common Stock: Veryan, QT Medical

12-month Restenosis vs. Lesion Length: Data from Randomized Trials

Endovascular Treatment of SFA-ISR

How to best treat?

- How to approach ISR?
 1. POBA
 2. Cutting balloon
 3. Atherectomy
 1. Laser
 2. Silverhawk
 3. Pathway
 4. DCB
 5. DES
 6. Endoprosthesis
 7. Bypass-Surgery

Every Aspect of Stent Design and Placement Has Some Association with Restenosis

- Mesh configuration
- Chronic outward force (stent oversizing)
- Stent material (nitinol>elgiloy>stainless steel)
- Strut thickness (coronaries)
- Stent length
- Stent overlap

Schillinger Euro-PCR 2008
Limitations of Stents

Stent Fracture

- **Type 1**
- **Type 2**
- **Type 3**
- **Type 4**

Latest Generation Devices for SFA Interventions

Dedicated (Biometric?) Stents

- GORE® TIGRIS Vascular Stent
- Dual Component Stent Design

Supera Vascular Stent

- Interwoven Nitinol Design

Unique BioMimics 3D design:
- SHORT + LONG connectors
- SPIRAL configuration
BioMimics
Proof of concept: Cadaver
Helical curvature of biomimetic stent accommodates femoropopliteal shortening in leg flexion

Biocompatible stent not approved for use in the US

VascuFlex® Multi-LOC
- Multiple Stent Delivery System (MDS)
- 6 individual stents on top of one delivery system:
 - Stent diameter: 5,6 mm
 - Stent length: 13 mm (6 / system)
 - Delivery system: 6F-system (0.035" guide wire)
 - Shaft lengths: 80 cm / 130 cm
- Indication:
 - SFA and popliteal artery (p1-p3 segment)

Angiographic Characterization of Dissections: NHLBI Modification
- GOAL:
 - Provide anatomic result of stent
 - Minimize injury – Minimize hyperplasia
 - Maintain physiologic vessel compliance
 - Operator control
 - Placement
 - Number of tacks
 - Timing
 - Maintain options for future reintervention

“Tacking” – A new modality
- Right SFA occlusion
- Predilatation 5/300mm PTA
- Right SFA after DCB
- 6 mm MultiLoc-stents
- Final result
Conclusion

- Long distant stent implantation is associated with
 - Reduced patency (Hong et al.)
 - Increased fracture rate
 - Impairment of vessel physiology and anatomy during leg motion
- Multiple short stents might overcome the limitations of a full metal jacket
- Prospective studies are on the way (LOCOMOTIVE, TOBA series)