Shockwave Intravascular Lithotripsy in Calcified Tibial Artery Lesions: How Well Does It Work?

Andrew Holden
Director of Interventional Radiology
Auckland Hospital, Auckland, New Zealand

VEITH Symposium, New York Wednesday 14th November

Relevant Disclosures

• Dr Holden is a Clinical Investigator and Medical Advisory Board Member for Shockwave Medical
• No other relevant disclosures

Calcified Tibial Arteries – Some FACTS

• Arterial calcification is very common in tibial arteries and associated with advanced age, diabetes, chronic renal insufficiency and critical limb ischemia (CLI)1
• The severity of tibial calcification is predictive of ischemia severity, wound healing rate2, amputation risk3 and mortality

Calcified Tibial Arteries – Some FACTS

• Arterial calcification may occur in the intima or media
• Medial calcification is particularly common in tibial arteries1
• Medial calcification increases arterial stiffness and drives poor outcomes2,3,4
• Most vessel preparation devices (eg atherectomy, scoring balloons) do not modify medial calcification

Calcified Tibial Arteries – Some FACTS

• Most tibial arteries undergo considerable elastic recoil after angioplasty1
• Medial calcification is associated with more severe elastic recoil and restenosis2,3,4

Calcified Tibial Arteries – Some FACTS

• Arterial calcification may occur in the intima or media
• Medial calcification is particularly common in tibial arteries1
• Medial calcification increases arterial stiffness and drives poor outcomes2,3,4
• Most vessel preparation devices (eg atherectomy, scoring balloons) do not modify medial calcification

Intravascular Lithotripsy (IVL): Localized Lithotripsy to Treat Cardiovascular Calcium

Inspired by urological applications, but designed for cardiovascular system
Cardiovascular Lithotripsy

Peripheral IVL Catheters

Sonic Pressure Waves
preferentially impact hard tissue,
disrupt calcium, leave soft tissue undisturbed

Localized Lithotripsy: 30 years of safety data
in kidney stone treatment

Optimized for the Treatment of Cardiovascular Calcium

Peripheral IVL Catheters
Shockwave IVL System Components

IVL Generator
- COMPACT & RECHARGABLE
- PORTABLE, IV-Pole Mountable
- BATTERY-POWERED
- NO EXTERNAL CONNECTIONS

IVL Connector
- CABLE
- SIMPLE & QUICK
- SMART MAGNETIC CONNECTION
- PUSH-BUTTON ACTIVATED

IVL Catheter
- INTUITIVE & SAFE
- OTW SYSTEM
- ANY .014" GUIDEWIRE
- STANDARD PTA TECHNIQUE
- 180 LITHOTRIPSY PULSES
- INTEGRATED PTA BALLOON
- LITHOTRIPSY EMISSORS
- SONIC PRESSURE WAVES CRACK CALCIUM INSIDE ARTERY WALL

After inflating the integrated balloon to 4 atm, the generator produces 1 energy pulse each second, that travels through the connecting cable and catheter to the emitters. A small spark at the emitters vaporizes the saline-contrast solution and creates a bubble which rapidly expands and collapses within the balloon, creating a short burst of sonic pressure waves.

The catheter can then be used to dilate the lesion to maximize lumen gain.

Case Example

OCT Analysis
- Confirms microfractures and micro-dissection to achieve luminal gain
- Also see changes in signal (reflectivity) indicating compliance change in the vessel wall

Peripheral IVL System: Clinical Programs

DISRUPT PAD I
- Post Market
- Single Arm
- N = 35
- 2014

DISRUPT PAD II
- Post Market
- Single Arm
- N = 60
- 2015

DISRUPT BTK
- Post Market
- Single Arm
- N = 20
- 2017

DISRUPT PAD III
- Observational Registry
- Single Arm
- N = 500
- 2017

Study Completed
- Enrolling
DISRUPT BTK Study: Infrapopliteal Disease

Objective: To study the safety and performance of the Shockwave Medical Peripheral Intravascular Lithotomy System in the treatment of calcified, stenotic infrapopliteal peripheral arteries

Design

- **Key eligibility criteria**
 - Rutherford category 1-5 infrapopliteal disease
 - Infrapopliteal lesions ≥50% stenosis
 - RVD 2.5–3.5 mm, ≤150 mm length
 - Moderate and severe calcification by angiography

- **Endpoints**
 - **Procedural**
 - **Primary Effectiveness:** Acute reduction in % diameter stenosis
 - **Follow up:** 30 days
 - **Major adverse events (Death, MI, TLR, amputation)**

Objective: To study the safety and performance of the Shockwave Medical Peripheral Intravascular Lithotomy System in the treatment of calcified, stenotic infrapopliteal peripheral arteries

DISRUPT BTK Study: Patient Demographics and Angiographic Findings

Baseline Characteristics N = 20

- **Age, years, mean ± SD** 79±9.6
- **Male Gender, % (n)** 70.0% (14)
- **Diabetes, % (n)** 40.0% (8)
- **Hypertension, % (n)** 95.0% (19)
- **Hyperlipidemia, % (n)** 75.0% (15)
- **Renal Insufficiency, % (n)** 40.0% (8)
- **Coronary Artery Disease, % (n)** 40.0% (8)
- **Current or Former Smoker, % (n)** 25.0% (5)
- **Rutherford Class, % (n)**
 - RC 3 20.0% (4)
 - RC 4 5.0% (1)
 - RC 5 75.0% (15)

Pre-procedure N=21 lesions, 19 subjects

- **Tibio-peroneal trunk** 9.5% (2)
- **Anterior tibial** 38.1% (8)
- **Posterior tibial** 38.1% (8)
- **Peroneal** 9.5% (2)
- **Popliteal artery below knee** 4.8% (1)

- **Reference vessel diameter, mm, mean ± SD (range)** 3.2 ± 0.6 (2.4-4.8)
- **Lesion length, mm, mean ± SD (range)** 52.2 ± 35.8 (13.8-144.0)
- **Calcified length, mm, mean ± SD (range)** 72.1 ± 37.6 (12.4-172.6)
- **Calcification, % (n)**
 - Moderate 52.4% (11)
 - Severe 47.6% (9)

Mean luminal diameter, mm, mean ± SD (range)

- 0.9 ± 0.6 (0.0-1.9)

Diameter stenosis, % 72.6%

Follow-Up 30 Days

- **100% freedom from TLR**
- **No MAE (death, amputation, MI)**

DISRUPT BTK Study: Safety and Effectiveness

- **Dissections 0 Grade D or greater**
- **Embolization No embolic events**
- **Perforations, thrombosis, abrupt closure No complications**

- **Residual stenosis 26.2%**
- **Acute gain 1.5%**

Safety and Effectiveness Study Completed

DISRUPT BTK Study: Case Example

Peripheral IVL System: Clinical Programs

DISRUPT PAD I
- Pre Market
- N = 35
- 2014

DISRUPT PAD II
- Post Market
- Single Arm
- N = 60
- 2015

DISRUPT BTK
- Post Market
- Single Arm
- N = 20
- 2017

DISRUPT PAD III
- Post Market
- Randomized
- N = 400
- 2017

Observational Registry
- Post Market
- Single Arm
- N = 500
- 2017

Study Completed

Enrolling

Registry BTK Case – Left Heel Ulcer (Rutherford 5)

Case Courtesy of Prof. Andrew Holden
Shockwave IVL in Tibial Arteries: Summary

- IVL is designed to treat both intimal and medial calcium allowing vessel expansion with minimal angiographic complications
- Acute results in the DISRUPT BTK Study show low residual stenosis with minimal vascular complications including no perforations, distal embolization, no reflow or abrupt closure
- 30 day safety results report no MAE including revascularization or amputation.
- Dedicated S4 BTK catheter available
- Ongoing experience is being gained in a real world registry