Importance of Air Emboli in Causing Strokes after TEVAR: New Technology and Techniques to Prevent Air Emboli from Devices

Tilo Kölbel, Vladimir Makaloski, Fiona Rohlffs
German Aortic Center Hamburg
University Heart Center
University Hospital Eppendorf

Disclosures

- Research grants, traveling, proctoring, speaking fees, IP, royalties with Cook
- Consultant with Philips
- Shareholder Mokita-Medical GmbH
- Speaking fees from Getinge
- IP: Consultant with Terumo Aortic

Stroke in TEVAR

- Incidence
 - in TEVAR: 3-11%
 - in complex TEVAR: >10%
- Anterior/posterior circulation
- Mechanism of stroke unclear
- Mortality 20%

Perera et al. 2015; Br J Surg 102: s2: 5
Feezor et al. 2007; J Endovasc Ther 14:568-73
Böckler et al. 2016; Eur J Vasc Endovasc Surg 51:791-800

Cook Zenith Branched Arch Endograft

- n = 27; Hamburg, Tokio, Lille
- 4/2013-11/2014
- Technical success 27/27
- 30d Mortality 0/27
- 1y mortality 1/27
- Stroke/TIA 3/27 (11%)

Spear et al 2016; Eur J Vasc Endovasc Surg 51: 380-5

Bolton – Relay Branched Stentgraft

European experience
- Multicenter
- n = 15, 12 male, Age 76
- All elective
- Technical success 15/15
- Mortality 1/15 (7%)
- Stroke 3/15 (20%)

Czerny, M et al. 2018; Eur J Cardio Thorac Surg 53:1007-12

Stroke Definition

Patient level pooled analysis from the TriGuard Trials (N=142)

Lansky et al. 2017; JACC; 69: 679-91
Lansky et al. 2017; Eur Heart J; 54:91
Stroke in TEVAR

Cerebral embolization, silent cerebral infarction and neurocognitive decline after thoracic endovascular aortic repair

- 31 TEVAR and MRI:
 - 25 MRI-lesions (81%)
 - 4 with clinical stroke (13%)
 - 21 subclinical
 - 15 Neurocognitive testing: Decline in 6/7 Domains

Patena et al. 2018; Biol J Surg 105:366-78

Clinical Impact of SBI

- Postoperative confusion
- Cognitive dysfunction
- Future stroke
- Impaired mobility
- Depression
- Dementia
- Parkinson disease
- Alzheimer disease

*Griem et al. 2016; Stroke 47:719-25
Ghanem et al. 2017, PLooC 12:e0168852
Verme et al. 2007; Lancet Neurol 6:11-9*

Pathophysiology

- Ischemia by arterial blockage
- Shear stress of passing bubbles
- Inflammatory response
- Brain metabolism ↓
- Nerval function ↓
- Blood-brain barrier damage
- Cerebral blood flow ↓
- Disturbance of blood distribution
- Intracranial pressure ↑

Vlaji et al. 2003; Clin Physiol Funct Imaging 23: 237-46
Furlow et al. 1982; Stroke 13: 847-52*

Air-Embolism in TEVAR

Air embolism during thoracic endograft deployment: An in vitro experimental study

Kamuran Inc, Wassermi, Cherny, Anders Jepsson, Mikael Nilssen and Morten Palsberg

Inc et al. 2016, Surge Open Med 4:1-6

Cerebral Protection in TEVAR

Cerebral embolic protection in thoracic endovascular aortic repair

- Claret’s Sentinel CEP device in TEVAR
- 10 patients
- TCD with gas/solid differentiation:
- >90% of HITs are gaseous
- Pre- and postoperative DWI/MRI

Grover et al. J Vasc Surg 16 May 24 2018
Air-Embolism in TEVAR

Standard tubular stent graft after 60ml saline flushing

Carlos F Bechara FACS
cfbechara@houstonmethodist.org

Elephant in the Room

Air

Air Embolism in EVAR

5 days after Standard EVAR

Protection Strategies

- Patient selection
- Minimize catheter/wire manipulation
- Temporary occlusion of carotid arteries
 - Vessel-loop
 - Balloon
 - Clamp

LSA Balloon Occlusion

Balloon protection of the left subclavian artery in debranching thoracic endovascular aortic repair

Seike et al. 2018; J Thor Cardiothor Surg; accepted

Courtesy of Prof. Matsuda, Japan
Protection Strategies

- CEP-devices
 - Filter devices, e.g. Sentinel by Chimed Med.
 - Deflectors, e.g. Triguard by Keystone Heart
 - Other...
- Carbon dioxide flushing
- Dead-space-reduction
- Liquid gas resolution

CO2 - Flushing

Carbon Dioxide Flushing Technique to Prevent Cerebral Arterial Air Embolism and Stroke During TEVAR

- 2014-2016: n=36
- All complex arch and ascending TEVAR:
 - Branched arch
 - Fenestrated arch
 - Ascending TEVAR
- All zone 0-1
- Stroke: 1/36 (3%)
 - minor non-disabling stroke

Additional Flushport

- Bench-top model
 - \(N=20\) tubular stentgrafts
 - Group A (10): 60ml saline
 - Group B (10): Carbondioxide +60ml saline
 - Validated volume measurement:
 - A: 0.79ml air after standard flushing
 - B: 0.51ml gas after + CO2-flushing

Perfluorcarbons (PFCs)

- High solubility of respiratory gases
- Low vapor pressure
- Radiopacity
- High specific weight
- High stability-bioinert-no metabolisation
- High viscosity

- Blood-substitute
- Liquid breathing
- Ophthalmic surgery
- Contrast agent

Degassed PFC

- Bench-top model
 - \(N=10\) tubular stentgrafts
 - Group G (10): Degassed PFC+60ml saline
 - Validated volume measurement:
 - A: 0.79ml air after standard flushing
 - B: 0.51ml gas after + CO2-flushing
 - D: 0.07ml gas after + CO2-flushing
 - G: 0.004ml gas with degassed PFC
Stroke during TEVAR is relevant and needs to be avoided.

Silent brain infarctions (SBI) are a frequent finding (80%) after TEVAR and associated with neurologic symptoms and cognitive dysfunction.

The source of stroke and SBI during TEVAR appears multifactorial.

Air-embolism from devices plays a significant role and should be prevented.