Towards Optimal Trial Design for Novel Endovascular Therapies for CLI

Mahmood Razavi, MD, FSIR, FSVM
Medical Director
Center for Clinical Trials
St Joseph Heart & Vascular Institute

Disclosures

- For the 12 months preceding this CME activity, I disclose the following types of financial relationships:
 - Research, clinical trial, or study funds received from: Mercator, Spectranetics, National Institutes of Health, Veniti

The Conundrum of “Benchmark” in CLI Population

- RCT represent ethical, economic, scientific, & practical challenges
- Insistence on RCT may slow pace of development or keep new technology out of reach for US pts
- Rapid pace of technology may make results of RCT obsolete

RCT remain the gold standard for adoption of new therapies, or any paradigm shift in disease management

Clinical Trials Factoids

- 90% of drugs that reach the clinical stage never make it to the FDA & commercialization
- 70% of phase-III drug trials fail
- Device landscape is not much better!

Clinical Trials Factoids

- Only half of the rejected drug applications are due to lack of efficacy¹
- It is crucial to invest the time and resources early in the design process to avoid unnecessary delays

¹http://www.pharmaceuticalnews.com/files/Clinical

Why Trials Fail?

- Lack of efficacy/safety
- Insufficient proof of concept data!
- Trial design inconsistent with clinical endpoint(s)
- Lack of enrollment/retention (pt recruitment is a team effort)
 - Difficult incl/excl criteria (rigorous entry criteria not needed in PRT)
 - Technology not exciting; lack of excitement of investigators/patients
 - PI not being a good champion of the trial
- Study under-funded
- Poor study execution
Pre-Design Checklist

- Understand the technology
- Understand the disease process
- Can the technology modify disease variables?
- What type of trial is needed to measure the treatment effect?
- What are the goals of the trial?
- Testing a therapeutic strategy that includes the technology or the technology itself?

Failure Triggers

<table>
<thead>
<tr>
<th>Drivers of failure</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Inadequate basic science | - Animal results not reproducible in humans
- Poor understanding of the target disease |
| Flawed study design | - Wrong endpoint
- Wrong I/E criteria
- Patient selection bias
- Insufficient sample size |
| Suboptimal drug dose or device type selection | |
| Flawed data collection & analysis | - Over-optimistic assumption
- Missing data, attrition bias, wrong statistical tests |
| Study operation & execution | - Poor site & PI selection
- Recruitment issues, poor enrollment, dropouts
- Non-compliance
- Missing data |
| Other | Insufficient assessment of landscape & current standards of care & precedents |

Case of Poor Understanding of Mechanism of Action

- Biologic therapies
 - Gene therapy (naked DNA, plasmid, vectors, etc)
 - Cell therapy (undifferentiated marrow, placental, adipose, etc)
 - Growth factors (HGF, VEGF, etc.)
- What is the optimal dose??
- What is the optimal route of delivery??
- Who is the optimal patient?
- What are measuring? Is that the right parameter??

Case of Poor Understanding of Target Disease

- Therapy X is well-studied in animal models
- Proof of concept established (BP, capillary density, arterial flow, angio score, etc. all measured & positive)
- Mechanism of action understood (somewhat): increased eNOS & VEGF expression

DCB in BTK

- IN.PACT DEEP
 - Likely due to suboptimal balloon platform & coating process
- Biolux
 - Small underpowered study
- Lutonix BTK showed a drug effect but …
Clinical outcome does not always tell the whole story in patients with CLI

Improved Clinical Outcome is Multifactorial
- Revascularization is necessary but not sufficient
- Multiple determinants of survival
- Multiple determinants of wound healing
- Multiple determinants of amputation
- Multiple determinants of success of revascularization

In complex diseases progress is incremental.

Problems with Clinical Endpoints in CLI

At 30 male with 3rd toe NHW, ulcer healed and pain resolved by 3 months

Limitations of Clinical Endpoints in CLI

- At 3 months, ATA lesion recurred but TPT stent patent – pt asx
- At 6 months, ATA occluded, wound recurred *BUT* TPT stent widely patent
- In a trial only measuring clinical endpoints, DES would have failed despite the fact that it did what it was supposed to do!
• ATA lesion failed within 30-days but pt did well clinically

• In a trial evaluating "clinical success" only, this patient would count as "success" despite the failure of atherectomy!

Optimal time to measure an effect

<table>
<thead>
<tr>
<th>Time</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal patient population

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Minimal dz burden</th>
<th>Severe dz burden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Therapy A</td>
<td>Therapy B</td>
</tr>
</tbody>
</table>

Conclusion

• Technology needs thorough preclinical evaluation
• Study design & execution should be vetted thoroughly
• Study endpoints should be clinically relevant & based on objectives of treatment but ...

For better understanding of the incremental contribution of a new technology or treatment strategy in CLI, adoption of surrogate endpoints is necessary.