Off-The-Shelf Endovascular Solutions for Complex Thoracoabdominal Aortic Aneurysms

Murray L. Shames, MD
Professor of Surgery and Radiology
Chief, Division of Vascular Surgery
Vice Chair of Clinical Research, Dept. of Surgery
Director TGH Aortic Center

Off the shelf Solutions for TAAA: Conflict of Interest

- Speaker: Cook, Gore, Medtronic
- Proctor: Cook, Gore, Medtronic
- PI: Gore SSB CTAG
- PI: PS-IDE Medtronic Valiant TAAA branched endograft
- Discussion includes off-label use of endografts

Off the shelf Solutions for TAAA: Commercially available Grafts

- Cook T-branch
 - Anatomic applicability 54-63%
 - Technical success 100%
 - 0% mortality
 - 0% endoleak
 - Re-interventions 10%

Off the shelf Solutions for TAAA: Objective

- Review the available off-label techniques available for endo TAAA repair

Off the shelf Solutions for TAAA: Terrace and Sandwich Techniques

2012 SEMIN VASC SURG
15 patients
Technical success: 92%
Mortality: 20% (2/15), 7.7% elective (1/13), 100% emergent (2/2)
Off the shelf Solutions for TAAA:
Sandwich Grafts

Off the shelf Solutions for TAAA:
Terrace Technique
The “Terrace Technique” – Totally Endovascular Repair of a Type IV Thoracoabdominal Aortic Aneurysm

Off the shelf Solutions for TAAA:
Off the shelf branched grafts

Off the shelf Solutions for TAAA:
PMEG - Fenestrations
Endovascular treatment of thoracoabdominal aortic aneurysm using physician-modified endografts

Off the shelf Solutions for TAAA:
PMEG - Branched Devices

Off the shelf Solutions for TAAA:
USF Octopus Technique
Off the shelf Solutions for TAAA: USF Octopus

Off the shelf Solutions for TAAA: Results

- 14 patients, 7 male since January 2015
- 35% symptomatic
- 2 vessel (abandoned renal) - 2
- 3 vessel - 7
- 4 vessel - 5
- Six celiac arteries sacrificed
- 2 cases TEVAR extension to L SCA
- Radiation exposure: 2318.6 Gy/cm²
- Mean contrast volume: 112 cc
- Median length of stay: 7 days/ ICU 4 days

Off the shelf Solutions for TAAA: Results

- 0% Spinal cord ischemia
- Mortality 14% (30d), 14% 1 year
- Endoleaks
 - 2 early
 - Type III endoleak—endovascular management: 2 (both associated with Type II outflow)
 - 2 late
 - Type II endoleak: observed
 - Type III endoleak (distal aortic cuff attachment, converted with distal bifurcated endograft)
 - Branch patency: 96%
- Endoleaks
 - 2 early
 - Type III endoleak—endovascular management: 2 (both associated with Type II outflow)
 - 2 late
 - Type II endoleak: observed
 - Type III endoleak (distal aortic cuff attachment, converted with distal bifurcated endograft)
 - Branch patency: 96%

Off the shelf Solutions for TAAA: Meta-Analysis

Table A published series of clinical trials for elective and acute TAAA

<table>
<thead>
<tr>
<th>Institution</th>
<th>Study Type</th>
<th>Study Design</th>
<th>Aortic Segment</th>
<th>Arterial Source</th>
<th>Endovascular Management</th>
<th>Type I Endoleaks</th>
<th>Type II Endoleaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH</td>
<td>Acute</td>
<td>Randomized</td>
<td>TAAA</td>
<td>Abdominal</td>
<td>Endovascular</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Acute</td>
<td>Randomized</td>
<td>TAAA</td>
<td>Abdominal</td>
<td>Endovascular</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Acute</td>
<td>Randomized</td>
<td>TAAA</td>
<td>Abdominal</td>
<td>Endovascular</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Acute</td>
<td>Randomized</td>
<td>TAAA</td>
<td>Abdominal</td>
<td>Endovascular</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Off the shelf Solutions for TAAA: PMEG - Branched

A novel physiologic thoracic aortic endograft (PTAEG) technique using a novel physiologic thoracic aortic endograft (PTAEG) technique.

Off the shelf Solutions for TAAA: PS-IDE Medtronic Valiant

Medtronic Valiant TAA (Pat Kelly Device) Restricted to PS-IDE (7 sites nationally)
Off the shelf Solutions for TAAA: PS-IDE Medtronic Valiant

- **Key features of Valiant TAAA**
 - TEVAR Main body – 2 lumens
 - Visceral manifold
 - Visceral endo branches
 - Distal modified Endurant

Each PS-IDE is designed as a prospective, single-center, nonrandomized, multi (or single) arm study with 5 year follow up

All PS-IDE sites are using similar protocols with the intent to pool data

Expanded arm for
 - Emergent/urgent/rupture
 - Renal insufficiency
 - Visceral vessel diameter < 5 mm

Study Arm

<table>
<thead>
<tr>
<th>Study Arm</th>
<th>Total</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
<th>Pararenal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Study Arm</td>
<td>18</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of Staged Cases</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
| Expanded Selection +
 OA/EU | 14 | 3 | 5 | 3 | 0 | |
| Number of Staged Cases | 1 | 0 | 0 | 1 | 0 | |
| Program Total | 32 | 5 | 12 | 11 | 3 | 3 |

(100%) (88%) (38%) (34%) (19%) (19%)

Index Procedure time (Minutes)

<table>
<thead>
<tr>
<th></th>
<th>Overall n=32</th>
<th>Primary Arm n=18</th>
<th>Expanded Selection Arm = O/EU n=14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure time</td>
<td>352±13.8</td>
<td>356±13.7</td>
<td>345±9.6</td>
</tr>
<tr>
<td>(Median: 314)</td>
<td>(Median: 325)</td>
<td></td>
<td>(Median: 302)</td>
</tr>
</tbody>
</table>

Estimated Blood Loss (mL)

<table>
<thead>
<tr>
<th></th>
<th>Overall n=32</th>
<th>Primary Arm n=18</th>
<th>Expanded Selection Arm = O/EU n=14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Loss</td>
<td>60±873</td>
<td>67±954</td>
<td>51±273</td>
</tr>
<tr>
<td>(Median: 408)</td>
<td>(Median: 575)</td>
<td></td>
<td>(Median: 450)</td>
</tr>
</tbody>
</table>

Pre-Op CSF drain

<table>
<thead>
<tr>
<th></th>
<th>Overall n=32</th>
<th>Primary Arm n=18</th>
<th>Expanded Selection Arm = O/EU n=14</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF drain</td>
<td>23±114</td>
<td>14±78</td>
<td>9±64</td>
</tr>
<tr>
<td>(Median: 162)</td>
<td>(Median: 450)</td>
<td></td>
<td>(Median: 203)</td>
</tr>
</tbody>
</table>

Technical success

<table>
<thead>
<tr>
<th></th>
<th>Overall n=32</th>
<th>Primary Arm n=18</th>
<th>Expanded Selection Arm = O/EU n=14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical success</td>
<td>30 (94%)</td>
<td>16 (89%)</td>
<td>14 (100%)</td>
</tr>
</tbody>
</table>

Cumulative ACM

<table>
<thead>
<tr>
<th></th>
<th>Subjects Enrolled</th>
<th>Subject Deaths</th>
<th>0 – discharge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative ACM ALL</td>
<td>32</td>
<td>3</td>
<td>3 (9%)</td>
<td></td>
</tr>
<tr>
<td>Cumulative ACM Primary Study Arm</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cumulative ACM Expanded Selection Arm</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total M/A to 30d (or re-hospital n=2)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects with 1 or more M/A</td>
<td>11 (59%)</td>
</tr>
<tr>
<td>All Cause Mortality</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>Acute Renal Failure Mortality</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>MI</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Permanent Neurologia</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>Respiratory Failure</td>
<td>10 (51%)</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>1 (5%)</td>
</tr>
</tbody>
</table>
Off the shelf Solutions for TAAA: Conclusions

- Endovascular techniques show early promise for thoracoabdominal aortic aneurysm repair
- While we await broader availability of branched/fenestrated technologies, a unique opportunity exists for exploration of individual surgeons creativity