Fenestration Misalignment with F/EVAR Leads to Bad Outcomes
Prevention & Treatment

Thomas L. Forbes, MD
R. Fraser Elliott Chair in Vascular Surgery
Peter Munk Cardiac Centre, University Health Network
University of Toronto

Disclosure
none

Table 4. Procedural details and 30-Day/In-hospital post-operative clinical outcomes

<table>
<thead>
<tr>
<th></th>
<th>Atomic Data</th>
<th>Standard Deviation</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>100 ± 5</td>
<td>70 ± 4</td>
<td>0.02</td>
</tr>
<tr>
<td>Lab 2</td>
<td>80 ± 4</td>
<td>60 ± 3</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Total Procedural Time (min)
- Lab 1: 262 ± 15
- Lab 2: 351 ± 25

Mean Fluoroscopy Time (min)
- Lab 1: 85 ± 6
- Lab 2: 106 ± 8

Mean Contrast Volume (ml)
- Lab 1: 193 ± 13
- Lab 2: 239 ± 20

Hospital Length of Stay (days)
- Lab 1: 5 ± 0.5
- Lab 2: 10 ± 1.5

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Endoleaks</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>> 0.5</td>
</tr>
<tr>
<td>No. of Endoleaks</td>
<td>0 (0)</td>
<td>4 (14)</td>
<td>3 (10)</td>
<td>> 0.5</td>
</tr>
<tr>
<td>No. of Endoleaks</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>4 (11)</td>
<td>> 0.5</td>
</tr>
</tbody>
</table>

30-day Complications
- Atrial Fibrillation: 1 (3) vs 2 (6) > 0.5
- Paraplegia: 1 (3) vs 4 (11) > 0.3
- Myocardial Infarction: 2 (7) vs 2 (6) > 0.5
- Ischemic Colitis: 0 (0) vs 4 (11) > 0.1
- Renal Failure: 0 (0) vs 1 (3) > 0.5
- Death: 0 (0) vs 4 (11) > 0.1

No. of Endoleaks
- Type 1: 0 (0)
- Type 2: 4 (14)
- Type 3: 2 (6)

Intraoperative Target Vessel Cannulation Failure
- 0 (0) vs 4 (11) > 0.1

Intraoperative Target Vessel Complication
- 1 (1) vs 8 (8) > 0.4

End-organ Ischemia and/or Death
- 1 (3) vs 11 (31) > 0.008

WHAT CAN A SURGEON DO TO MINIMIZE DEVICE ROTATION?

1. To develop a mechanically realistic aortoiliac bench top model
2. To validate quantitative anatomical markers which have been observed clinically
3. To evaluate the effect of operator technique on stent graft rotation

Flexible models
- Molds are 3D printed in PLA at a resolution of 0.2 mm
- Polyvinyl alcohol cryogel is then cast using a 15% solution with 4 freeze thaw cycles
- Effective rigidity is controlled by altering the thickness of the model walls

Idealized models
- Helically structured to have a constant torsion
 - Torsion specified by altering the pitch and radius of the helix

Patient specific models
- Segmented from pre-operative CT angiograms

Flexible models
- Molds are 3D printed in PLA at a resolution of 0.2 mm
- Polyvinyl alcohol cryogel is then cast using a 15% solution with 4 freeze thaw cycles
- Effective rigidity is controlled by altering the thickness of the model walls

Idealized models
- Helically structured to have a constant torsion
 - Torsion specified by altering the pitch and radius of the helix

Patient specific models
- Segmented from pre-operative CT angiograms
Experimental Apparatus

Introduction

Methods

Results

Conclusions

- Torsion and rigidity/calcification combined are direct causes of intraoperative stent graft rotation.
- In-vivo correction of orientation significantly increases the observed rotation.
 - If clinically safe, fully remove the device, adjust the orientation and reinsert the device.

Table 4-1. Measured rotational errors during ZFEN deployment in patient-specific aortoiliac phantoms, compared with the expected intraoperative rotation during patient deployment.

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Model</th>
<th>Intraoperative Rotation (°)</th>
<th>Absolute Error (°)</th>
<th>Iliac Torsion (mm⁻¹)</th>
<th>Iliac Calcium Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>10.2</td>
<td>2.3</td>
<td>1.2</td>
<td>1322</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>20</td>
<td>3</td>
<td>3.1</td>
<td>1052</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>25</td>
<td>4</td>
<td>3.2</td>
<td>1264</td>
</tr>
</tbody>
</table>

Figure 4-4. Evaluation of the effect of operator insertion technique in rigid idealized models at varying levels of torsion. **Straight**: No correction of device orientation during insertion. **Multiple**: Insert the device, note orientation; fully remove the device, correct the orientation accordingly; and reinsert. **Corrected**: Gradually correct the orientation of the device as needed during insertion.