Advantages and Limitations of Inner Branches in F/B EVAR

Eric Verhoeven, MD, PhD, Athanasios Katsargyris, MD
Department of Vascular and Endovascular Surgery
Paracelsus Medical University, Klinikum Nuremberg, Germany

Disclosures

- William Cook Europe/Cook Inc.
 - Consultant & Research grants
- Atrium Maquet Getinge
 - Consultant
- Bentley
 - Consultant
- Siemens
 - Consultant

Fenestrations or Branches?

Fenestration
- 90 degree take-off
- Graft in contact/close to aortic wall
- Catheterisation from below

Branch
- Sharp take-off
- Larger space between graft and aortic wall
- Catheterisation from above

What to do with „non-suitable“ vessels?
Advantages of Inner Branches

- No Risk of squashing the Branch
 - Small diameter
 - Angulation
- Option to keep the main graft wide
 - Grafts with combination of F and B
- Cover less Aorta proximally

- Easier catheterization of Vessel?
 - Support of the „basket“ guides the catheter

Post-Dissection TAAA
Repair of previous FEVAR

Partial opening of graft...

Patients (N=43)
Main Reason for Inner Branches (N=63)

- Target Vessel Anatomy N=38
- To keep main graft wide N=34
- To start lower in Aorta N=7
- Specials N=2
- PS Combination of Reasons! N=18
Stent-graft Design

• Inner Branches + Fenestrations
 – N=59

• Inner Branches only
 – N=4

Indwelling Wire
54/63 Inner Branches

<table>
<thead>
<tr>
<th>N of Indwelling wires</th>
<th>N of Inner Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Technical Details
Catheterization of Inner Branch/Target Vessel

• Technical Success: 100%

• Inner Branches
 – With indwelling wire: N=52: all <1’
 – Without indwelling wire: N=11: all >3’

• Target Vessels
 – With fenestrations: N=49: all <1’
 – Only inner branches: N=14: (<1’: N=3; 1’-3’: N=4; >3’:N=7)

Follow-up
Mean: 14 months (2-26 months)

• Target Vessel Occlusion: N=5 (7.9%, in 4 patients)
 - all in renal arteries
 - 2/5 in grafts with branches only
 - 4/5 in vessels with 5mm bridging stentgraft

Oclusions (N=5)
Details

<table>
<thead>
<tr>
<th>CA</th>
<th>SMA</th>
<th>RRA</th>
<th>LRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>3 (1 exclusion)</td>
<td>8 (1 exclusion)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4 (2 exclusions)</td>
<td>4 (1 exclusion)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>22</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

LRA Occlusion:
Suboptimal Orientation of the Graft? (4 inner branches)
Limitations

- Manufacturing with regard to Position
 - Have to fit inside existing Z-Stents

Conclusions

- Interesting third option
 - Combination of inner Branch(es) with fenestrations
 - Avoid graft with inner branches only!