UPDATE ON PREDICTING AAA GROWTH RATES AND RUPTURE RISK FROM SMOOTH MUSCLE CELL BEHAVIOR

Kak Khee Yeung
MD, PhD, FEBVS
Department of Vascular Surgery
Amsterdam Cardiovascular Sciences
Amsterdam University Medical Centers, location VU medical center
Email: k.yeung@vumc.nl

N. Bogunovic, P. Hordijk, J.D. Blankensteijn, K.K. Yeung

PROBLEM

- Still not able to predict Rupture or Growth rates of Aneurysms and Dissections
- Endovascular repair → 30% reintervention rates
- Are we able to select patients for treatment?
- Do we get to a medical treatment?

New insights from cell specific analysis

AORTIC WALL STRUCTURE

VASCULAR SMOOTH MUSCLE CELLS (SMC)

PATHOPHYSIOLOGY OF AORTIC ANEURYSMS: KEY ROLE FOR SMOOTH MUSCLE CELLS
GENETIC MUTATIONS INVOLVING SMC

- Mutations in genes of the mechano-transduction complex: smooth muscle cells + environment

20% Familial thoracic aneurysms

SMOOTH MUSCLE CELLS HAVE A KEY ROLE IN AORTIC ANEURYSM DEVELOPMENT

- Disturbed SMC function
- Weakening of the aortic wall

LIVE PATIENT SPECIFIC SMC CELL LINES

Open aneurysm repair

Aortic biopsy → Tissue explant protocol → Patient specific SMC

STUDIES ON SMC BEHAVIOR AND AAA BEHAVIOR PREDICTION

1. Study of SMC function: Contraction of SMC
2. Cell-specific DNA or RNA analysis → Finding new mutations
3. Building a patient cell specific Bio-engineered scaffold to study the interaction of SMC with EC and production of ECM
4. Cell-specific wall strength of live aortic tissue

1. CONTRACTION OF SMC

- Graph showing contraction (%) of Smooth Muscle Cells (SMC), Smooth Muscle Tissue (SMT), and Aorta (Ao)
11/14/2018

LOW CONTRACTION IS CORRELATED WITH HIGHER AAA GROWTH RATE

\[R^2 = 0.719, \ p = 0.045 \]

In 3 of 7 patients pathogenicity confirmed!

2. FINDING NEW MUTATIONS

1 x ‘splice error’ and 2x amino acid change were shown

3. STUDY OF SMC AND ECM IN 3D BIO-ENGINEERED VESSEL

Lower contraction in SMC with genetic variant

Cell growth degrades the scaffold, leading to the production of an original extracellular matrix

3. BIO-ENGINEERED VESSEL: ANISOTROPY

A parameter of order in the system

More straight matrix and not a network of ECM in AAA patients

4. NANOIDENTATION:

Cell and aortic wall specific strength
CONCLUSION

- Our preliminary results show that a disturbed function: contraction and ECM production of SMC have a key role in aortic aneurysm development.
- SMC can be made of skin biopsies.
- Our new cell specific analysis can lead to discovery of new mutations.
- Our bio-engineered vessel scaffolds can be used to study SMC function and the reaction to any stimulation therapy.
- Smooth muscle cells are a new focus for medical therapy.