NOVEL ORAL ANTICOAGULANT (NOAC) USE AFTER LOWER EXTREMITY BYPASS IS ASSOCIATED WITH INCREASED GRAFT AND LIMB EVENTS AND RESULTS DO NOT LOOK BETTER THAN WITH WARFARIN

Veith Symposium 2018
November 16, 2018

William P. Robinson MD
Division of Vascular and Endovascular Surgery
University of Virginia School of Medicine
Charlottesville, VA

Anticoagulation after Lower Extremity Bypass (LEB)

- Veterans Affairs Cooperative study #362 (RCT) and a handful of retrospective studies have shown benefit to anticoagulation in patency of prosthetic or “high risk” vein LEB
- Veterans Affairs Cooperative study #362 (RCT) and a handful of retrospective studies have shown benefit to anticoagulation in patency of prosthetic or “high risk” vein LEB
- Primary basis of common surgical practice:
 - ASA for standard vein bypass and prosthetic to AK pop
 - ASA and Warfarin for prosthetic bypass below the knee, “high risk” conduit, and poor outflow

Guidelines for Medical Therapy after LEB Weak and Highly Variable

- Recommend antiplatelet after LEB
- “Evidence inadequate to support a definitive recommendation” on anticoagulation

Bypass Patients have other Indications for Anticoagulation

25-30% of LEB patients are discharged on anticoagulation

Novel Oral Anticoagulants (NOACs)

Advantages
- No need for laboratory monitoring
- Lower food and drug interactions
- Broader therapeutic window
- Less bleeding risk?

Journal of Multidisciplinary Healthcare 2015:8 217–228
NOACs

- Novel Oral Anticoagulants (NOACs) approved for non-valvular atrial fibrillation, prophylaxis and treatment DVT/PE
 - dabigatran (2010)
 - rivaroxaban (2011)
 - Apixaban (2012)
 - Edoxaban (2015)
- Increasingly utilized “off-label” as anti-thrombotic therapy in PAD

Objective: assess the contemporary utilization of NOACs in patients undergoing infrainguinal bypass and the impact of NOACs on long-term graft and limb – related outcomes in comparison to Warfarin

Anticoagulation after LEB in the VQI

19,162 Infrainguinal Bypass VQI 2014-2017
9,398 with complete 1 year FU

Excluded:
- “asymptomatic” disease,
- bypasses on second limb
- unclear anticoagulation regimen
- Key graft variables

- 7,113 infrainguinal bypass
 - 248 (3.5%) NOAC
 - 1,475 (21%) Warfarin
 - 5,390 (76%) none

Results: NOAC Utilization after Lower Extremity Bypass

Results: Operative and Bypass Characteristics

<table>
<thead>
<tr>
<th>Distal Target</th>
<th>None</th>
<th>Warfarin</th>
<th>NOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>↑ tibial bypass</td>
<td>↑ tibial bypass</td>
<td></td>
</tr>
<tr>
<td>NOAC</td>
<td>↑ prosthetic bypass</td>
<td>↑ prosthetic bypass</td>
<td></td>
</tr>
<tr>
<td>↑ operative time (30 minutes)</td>
<td>↑ operative time (30 minutes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endarterectomy | 1,583 (29%) | 396 (27%) | 60 (24%) | 0.04
Suprainguinal Bypass | 122 (2%) | 49 (3%) | 7 (3%) | 0.008
Completion study | 1,342 (25%) | 443 (30%) | 60 (25%) | < 0.001
Arteriogram | 334 (6%) | 118 (8%) | 19 (8%) | 0.038
EBL (ml) mean (SD) | 257 (283) | 319 (395) | 304 (330) | < 0.001
Time (minutes) mean | 228 (104) | 265 (125) | 244 (118) | < 0.001

Results: Bypass Graft Patency

Results: Freedom from Major Adverse Limb Events
Predictors of Graft Failure

<table>
<thead>
<tr>
<th>Variables</th>
<th>Failed Primary Patency</th>
<th>Failed Assisted Patency</th>
<th>Failed Secondary Patency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>HR (95% CI)</td>
<td>P-Value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>NOAC</td>
<td>1.3 (1.1-1.5)</td>
<td>1.3 (1.1-1.5)</td>
<td>1.5 (1.1-1.9)</td>
</tr>
</tbody>
</table>

Other predictors of Failed Graft Patency:
- Age < 60
- Prior PVI
- Hispanic
- Infrageniculate Target
- Real Pain vs. Claudication
- Prosthetic Conduit
- CHF
- Alternative Vein/Other
- Prior Bypass

Predictors of Major Amputation and Major Adverse Limb Events

<table>
<thead>
<tr>
<th>Variables</th>
<th>Amputation</th>
<th>MALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>1.6 (1.3-2.0)</td>
<td>1.2 (1.1-1.3)</td>
</tr>
<tr>
<td>NOAC</td>
<td>-</td>
<td>1.4 (1.1-1.7)</td>
</tr>
</tbody>
</table>

Other predictors of MALE:
- Rest Pain
- CHF
- Tissue Loss
- Prior Ipsi Bypass
- Acute Ischemia
- Infrageniculate Target
- Dialysis
- Prosthetic Conduit

Limitations
- Selection bias: VQI registry may not adequately capture important factors that influence selection of patients receive NOACs and outcomes
- Smaller sample size in NOAC population: underpowered to detect differences?
- Not all current NOACs captured in VQI
 - apixaban, edoxaban, and betrixaban
- Dosing regimens and compliance are not known
- Follow-up limited to 1 year

NOACs, Warfarin, and LEB
- NOAC and Warfarin utilized after infrainguinal bypass with high-risk patient and graft characteristics
- NOAC utilization after infrainguinal bypass is increasing and Warfarin utilization decreasing
- At one year, NOACS and Warfarin were associated with worse mid-term graft patency and limb-related in comparison to no anticoagulation
- After controlling for multitude of patient, medical, operative, and post-operative characteristics
- No difference in graft-related and limb-related outcomes between NOACs and Coumadin

Recent and Ongoing Study of NOACs
- COMPASS Trial: reduced MALE in 7000 patients with PAD randomized to low-dose Rivaroxaban + AS vs. ASA (27% underwent previous LE revascularization)
- Voyager-PAD: Low dose Rivaroxaban+ ASA vs. ASA in patients after LEb or endo. revasc.
- Outcomes: Thrombotic Vascular Events
- ALI, Amputation
- Ongoing study of the impact of NOACs on graft-related, limb-related, and cardiovascular outcomes in patients undergoing lower extremity bypass is warranted

Thank you