Update on an Emerging Radiation Free 3D Endovascular Guiding System (IOPS) from Centerline Biomedical:
How does it work?
When will we have it?
How much does it cost?

Matthew J. Eagleton, MD
Chief Div Vasc & Endovasc Surgery, Mass General Hospital
Robert Linton Professor of Surgery, Harvard Medical School
Boston, MA

Disclosure
• Centerline Biomedical: Chairman of the scientific advisory board

Current Imaging Technology
• Imaging is the key component to endovascular therapy
 • Anatomy visualization
 • Endovascular tool localization
• With increased complexity of endovascular procedures need corresponding improvements in imaging

Intra-Operative Positioning System (IOPS)
• What does it provide?
 • Interactive 3D Vascular Imaging
 • EM tracking of endovascular “tools” within the vascular tree and the 3D imaging

First key component:
Interactive 3-Dimensional Imaging

Based on a Mathematical Model for Vascular Image Construction
• Generated from DICOM CT data
• The model was tested by assessing the relative geometry of the aortic branches

Algorithm is Patient Specific, Automatic, and can “Understand” Point Specific Anatomy

Second Key Component:
Device localization within the model

EM Tracking System Deployed in Fluoroscopy Suite
Patient-mounted tracking pad maintains registration even in context of gross patient motion

Sensor-Equipped Instruments
Requires a registration process similar to fluoro overlay
What does IOPS provide

- Enhanced three dimensional imaging
- Ability to manipulate the imaging to provide multiple, ideal views
- Ability to track the endovascular tools within the vascular image – correlating directly with in vivo localization

Multiple views attainable – all controlled by the operating physician.
Provides the ideal perspective for that procedure.

Commercial System – Porcine Study

Catheter RRA - IOPS

Catheter RRA - Angio verification

Wire LRA - IOPS
Status
- Received 510K approval on June 24, 2019
- Undergoing initiation of clinical roll out
- Cost
 - $200,000 (approximately) for the system
 - Disposable items (catheters, sheaths, wires)
- Advanced R&D ongoing
 - Refinement of sensor-equipped tools
 - Application to additional indications
 - Expansion of modeling capabilities to include specific endografts
 - Advanced algorithm development to anticipate and display vessel deformation
 - Advanced visualization (NIH grant: RHL 139290B)

Augmented Reality
- Allows anatomy to be augmented to actual anatomic site interactively

First in Man (Commercial System) October 16, 2019

Head-mounted Displays
- Holographic visualization

Holographic Visualization
- Vascular anatomy is digitally augmented to the realtime display, so anatomy is visible regardless of obstructions – even during endo
- Visual aids provided, including plane of branch vessel
3D Guidance, Navigation, Control

- Operator can read real-time quantitative feedback, without having to look away from work

Virtual Deployment

- Can simulate device geometry post-deployment and inspect from any view angle desired

Conclusion

- Tremendous advancement in endovascular tools
- Working towards advancement in visualization techniques
 - Better visualization and 3-D understanding of the anatomy we are working in
 - Improved visualization of device location within that specific anatomy
 - Improve the performance of our procedures
 - Augment, and maybe replace, fluoroscopy

Intra-Operative Positioning System