Mark G Davies MD, PhD, MBA
VEITH 2019

Disclosures
• Specific Disclosures
 • None
• General Disclosures
 • None
• Advisory
 Any views expressed do not reflect the views of the State of Texas or the University of Texas System

Chest VTE Guidelines
• The 2016 CHEST Antithrombotic Therapy for Venous Thromboembolism Disease guidelines do not mention ECMO in the management of massive PE

Indications for ECMO
• Acute Respiratory Distress Syndrome
• Hypercapnic Respiratory Failure
• Lung Transplant Candidates

Contraindications
Relative Contraindications
• High-pressure ventilation (plateau airway pressures over 30 cm of water) for more than 7 days
• High FiO₂ requirements (over 80% for more than 7 days)
• Limited vascular access
• Inability to accept blood products
• Any condition or organ dysfunction that would limit the likelihood of overall benefit from ECMO, such as severe, irreversible brain injury or untreatable metastatic cancer

Absolute Contraindications
• Contraindication to anticoagulation
• ECMO as bridge to lung transplantation if transplantation will not be considered

PE Risk-Benefit Continuum 2016*
Risk of cardiac arrest
Risk of chronic disability
PE Risk-Benefit Continuum 2017
Everything else
Submassive with risk of further embolization
Hemodynamically unstable embolization
Muscular
Extracorporeal Life Support Organization (ELSO) guidelines:
- Patients with ARDS and a Murray Score of 3-4 may be considered for ECMO cannulation in the correct clinical setting.
- Patients with a Murray Score >2 could be considered for transfer to a center with ECMO capabilities.

PE: Indicators of Poor Outcome

ESC criteria (based on consensus; lack of validation)

| Category | Criteria | Probability
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>Cardiovascular shock or persistent hypotension</td>
<td>> 30 %</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>Lab (troponin, BNP) or RV dysfunction</td>
<td>1-30 %</td>
</tr>
<tr>
<td>Low risk</td>
<td>normal labs (troponin, BNP); normal RV function</td>
<td>< 1 %</td>
</tr>
</tbody>
</table>

SOUTH TEXAS CENTER FOR VASCULAR CARE

Roles for ECMO in PE

ECMO is a means of improving oxygenation and clearing CO₂.

Indication in PE: Progressive hypoxemia or acidosis with intact RV function, unresponsive to best medical treatment.

Roles for ECMO in PE

ECMO is a means of unloading the right ventricle and supporting systemic circulation in massive PE.

Indication in PE: Progressive right ventricular failure associated with pulmonary arterial hypertension, unresponsive to medical treatment.
Impella
VAD
VA-ECMO

Roles for ECMO in PE
- Stabilization
- Bridging / Temporizing
- Recovery

VA ECMO
VA ECMO
VV ECMO

Massive PE

Algorithm for treatment of patients with massive pulmonary embolism.
Cardiac Related Death

All-Cause Related Death

MACE was as high as 27.3%

Immediate Role for Cardiopulmonary bypass – Surgical Thrombectomy

- Stabilization for OR
- CPB for surgery
- Recovery of RV or Lungs
Confirmed PE

Minor / Stable PE
Low Risk
Submassive PE
Intermediate Risk
Massive PE
High Risk

Catheter-directed thrombolysis
Intravenous Bolus thrombolysis
Both +RVD and +Biomarkers

Repeate

Success
Failure

Possible Surgical Embolectomy
Retrievable IVC Filter
Anticoagulation

Anticoagulation

Surgical Embolectomy
Retrievable IVC Filter

SOUTH TEXAS CENTER FOR VASCULAR CARE

Literature Review

Period between 1995 and 2014
271 patients
73% survival

Extracorporeal membrane oxygenation in acute massive pulmonary embolism: a systematic review

MD Yousuf, Y. Zachariah and A. Vyas

UT VASCULAR

SOUTH TEXAS CENTER FOR VASCULAR CARE

Table 2. Definitive treatment for PE and survival

<table>
<thead>
<tr>
<th>Definitive Treatment</th>
<th>Success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMO + Surgical embolectomy</td>
<td>9 (4.2%)</td>
</tr>
<tr>
<td>ECMO + Catheter embolization</td>
<td>2 (0.8%)</td>
</tr>
<tr>
<td>ECMO + Thrombolysis</td>
<td>7 (3.1%)</td>
</tr>
<tr>
<td>ECMO + Surgical embolectomy + Thrombolysis</td>
<td>2 (0.8%)</td>
</tr>
<tr>
<td>ECMO + Catheter embolization + Thrombolysis</td>
<td>2 (0.8%)</td>
</tr>
<tr>
<td>ECMO + Surgical embolectomy + Catheter embolization + Thrombolysis</td>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>ECMO alone</td>
<td>8 (6.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>16 (10.0%)</td>
</tr>
</tbody>
</table>

PE: pulmonary embolism; ECMO: extracorporeal membrane oxygenation.

SURVIVAL
69%

SOUTH TEXAS CENTER FOR VASCULAR CARE

Life-threatening massive pulmonary embolism rescued by venoarterial-extracorporeal membrane oxygenation

Filipe Correia, Guillaume Lebreton, Nicolas Bréchet, Guillaume Helmière, Anna Nieszkowska, Jean-Louis Trouillet, Charles Edouard Lapic, Pascal Leprieur, Jean Chastre, Alain Cambier and Matthias Schmidt

Critical Care

RESEARCH
Open Access

UT VASCULAR
Life-threatening massive pulmonary embolism rescued by venoarterial-extracorporeal membrane oxygenation

17 high-risk PE patients
median age 51 (range 18-70) years,
SAPS II 78 (45-95)]
VA-ECMO for 4 (1-12) days.
15 (82%) patients with pre-ECMO cardiac arrest,
7 (41%) were cannulated during CPR,
8 (47%) underwent pre-ECMO thrombolysis.

90-day survival
47%.
20 patients
5.1 days of VA ECMO
In-hospital survival 95%
RV function preserved 90%
Risk factors for failure of RV recovery
- History of PE
- Recent immobilization
- Chronic DVT (> 2 weeks)
- Higher BNP
- Higher Qanadli score

Qanadli Score
- The arterial tree of each lung is regarded as 10 segmental PAs (three to the upper lobes, two to the middle lobe or lingula, and five to the lower lobes).
- The presence of an embolus in a segmental PA is scored as 1 point, and the presence of an embolus at the most proximal arterial level are scored a value equal to the number of segmental PAs arising distally.
- A weighting factor is used for each value (0 = no defect, 1 = partial occlusion, and 2 = complete occlusion).
- An isolated subsegmental embolus is considered a partially occluded segmental PA and is assigned a value of 1.
- The maximum CT obstruction index is 40.

The questions answered

<table>
<thead>
<tr>
<th>VA ECMO</th>
<th>VV ECMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEN</td>
<td>Pre-op</td>
</tr>
<tr>
<td></td>
<td>Peri-op</td>
</tr>
<tr>
<td></td>
<td>Post-op</td>
</tr>
<tr>
<td>HOW</td>
<td>Venous</td>
</tr>
<tr>
<td></td>
<td>Arterial</td>
</tr>
<tr>
<td>WHY</td>
<td>RV support</td>
</tr>
</tbody>
</table>

To improve the vascular health of the region though high quality prevention, management and therapy, while educating future leaders in vascular care.