Carotid Plaque Characteristics With Duplex, CT And MRI Can Predict High Stroke Risk Patients With Asymptomatic Carotid Stenosis

Christos D. Liapis, MD, FACS, FRCS, FEBVS
Professor (Em) of Vascular Surgery
National & Kapodistrian University of Athens
Director Vascular & Endovascular Clinic
Athens Medical Center

Imaging markers of Vulnerability: Ultrasound

Gray Scale Median (Objective Classification)
(Computer analyzed global echogenicity of the plaque)

Low GSM (<25) / echolucent

Vulnerable / Symptomatic

High GSM (>25) / echogenic

Asymptomatic

Enhanced activity index

Markers of Vulnerability: Ultrasound

J Black Area

Total plaque volume

3D Ultrasound

Khalak S. et al. / J Vasc Surg 2013
Lee W. Ultrasonography 2014
Ahm B. et al. / J Vasc Surg 2017

CEUS with dB-E is indicative of the extent of plaque neovascularisation

Faggioni et al. / Eur J Vasc Endovasc Surg 2011:61:239-48

Imaging markers of Vulnerability: Ultrasound

DEGREE OF STENOSIS + PLAQUE ECHOGENICITY

Identifying the vulnerable patient with carotid stenosis

Clinical information, family history, genetics

+ Imaging

Biological Markers
Kinematic Features of the Arterial Wall

The incorporation of kinematic features like motion synchronisation of the arterial wall have a favorable impact on the performance of image-data driven diagnosis for CAD and vulnerable plaques.

Markers of Vulnerability: TCD

Patients with microemboli at baseline were significantly more likely to experience events.

Markers of Vulnerability: Ultrasound

ADVANTAGES
- low-cost
- low-risk
- well-tolerated

DISADVANTAGES
- inter- and intraobserver variability
- efficacy of standardised computerised assessments
- limited assessment of a heavily calcified plaque due to acoustic shadowing

Markers of Vulnerability: CTA

ADVANTAGES
- calcification
- plaque volume

DISADVANTAGES
- calcification artefact

MRI Markers of plaque vulnerability

- Thin fibrous cap
- Large lipid core
- Endoplaque hemorrhage

3 Tesla MRI Studies of plaque regression after statins
Markers of Vulnerability: MRI

ADVANTAGES
- Identification of most plaque characteristics with moderate to good agreement
 - high soft tissue contrast
 - high in-plane resolution

DISADVANTAGES
- high cost
- low availability, especially for 3-Tesla and 7-Tesla MRI

Markers of Vulnerability: 18F-FDG PET/CT

<table>
<thead>
<tr>
<th>Plaque type</th>
<th>Plaque, n</th>
<th>TBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruptured</td>
<td>315</td>
<td>1.264 (1.286–1.457)</td>
</tr>
<tr>
<td>Thin</td>
<td>584</td>
<td>1.220 (1.391–1.381)</td>
</tr>
<tr>
<td>Thick</td>
<td>279</td>
<td>1.145 (1.000–1.221)</td>
</tr>
<tr>
<td>Calcified</td>
<td>333</td>
<td>1.121 (1.113–1.139)</td>
</tr>
<tr>
<td>Haemorrhage</td>
<td>205</td>
<td>1.138 (1.003–1.473)**</td>
</tr>
<tr>
<td>Lipid</td>
<td>293</td>
<td>1.299 (1.150–1.522)**</td>
</tr>
<tr>
<td>Collagen</td>
<td>347</td>
<td>1.198 (1.094–1.340)</td>
</tr>
</tbody>
</table>

Markers of Vulnerability: MRI

Conclusions I

- Many imaging techniques are now investigating carotid artery stenosis and plaque’s vulnerability and are complimentary to each other.
- Ultrasound is primarily used to assess a plaque’s echogenicity, with good sensitivity in the detection and characterization of vulnerable carotid plaques; however, the accuracy of ultrasound compared with CT and MRI is suboptimum.

Conclusions II

- CT can be used to assess the volume of atherosclerotic plaques and detect ulcerations, providing good detail for morphological analysis and for calcium identification.
- With CT it is difficult to reliably estimate the grade of stenosis and differentiate between soft plaque components.
Conclusions III

- MRI is currently the most suitable imaging technique to characterise features of plaque vulnerability like intra-plaque hemorrhage.
- Drawbacks of MRI are cost, the relatively longer overall study time and sensitivity of image quality to motion effects.

Thank you for your attention

London, Sunday November 17