Optimal Endovascular Treatment of Aorto-Iliac Occlusive Disease: Proper Stent or Stentgraft Selection and Technical Tips

Jean Bismuth, MD FACS
Associate Professor of Surgery (Weill Cornell)
Adjunct Professor of Biomedical Engineering (Rice University)
Houston Methodist Hospital
Houston, Texas

Disclosures
- WL Gore: Speaker and Consultant
- Principal Investigator in the US IDE Study evaluating the GORE® VIABAHN® VBX Balloon Expandable Endoprosthesis

Publication Highlights
- Complex long segment lesions can be easily treated with iliac stenting
- TASC classification does not alter outcome significantly
- In TASC II D lesions CS showed improved outcomes, otherwise BMS and CS equivalent
- COBEST Trial showed enduring benefits of CS over BMS at 5 years

Impact of stent-graft studies on treatment for Complex IOD
- Multiple consensus and practice guidelines now generally endorse an endovascular-first strategy for TASC II C & D IOD lesions in experienced endovascular centers
- Stentgrafts offer proven and theoretical advantages for complex lesions
 - Exclude plaque and prevent in-stent neointimal hyperplasia
 - Decrease risk of complications stemming from distal embolization, perforation, rupture, or dissection
 - Promote hemodynamic flow via a new flow lumen

Self-expanding vs balloon-expanding peripheral stents; attribute/performance comparisons

Self-Expanding Stent
- Shape memory alloys (e.g., nitinol)
- Deployed via release of constraining mechanism

Balloon Expandable Stent
- Ductile metal alloys (e.g., stainless steel)
- Deployed via angioplasty (PTA) balloon inflation

Generalized comparison of attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>SX</th>
<th>BX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial strength / recoil resistance</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Trackability, implanted conformability</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Diameter adjustment (flare/flare)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Deployment accuracy</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Compression recovery</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

When is a BX stent desired for IOD treatment?
- Highly calcified/non-compliant lesion
- Tapered vessel
- Distal lesion

A BX stent-graft engineered specifically for IOD
- Flexibility (on catheter and implanted)
- Trackability through tortuous vessels
- Conformability once implanted
- Ability to withstand longitudinal compression (e.g., iliac)
- Accurate placement (minimal foreshortening)
- Improved stent retention on delivery system (tracking and deploying)
- Avoid “endotrauma”, stent embolization, retrieval
Ideal characteristics of an Iliac Stent

- Wide range of sizing and oversizing
- Good visibility during implantation
- Respects the angulation of the vessel
- Durable and flexible after flaring, during the cardiac cycles, the diaphragmatic motion
- High radial forces and resistance to compression (calcified vessel)
- Stent retention during navigation
- High trackability of the delivery system

Unique technology and performance VBX

- Independent stainless steel rings
- Independent rings for flexibility and conformability
- Minimizes foreshortening
- Provides high radial strength
- Stent retention during navigation
- High trackability of the delivery system
- High radial forces and resistance to compression (calcified vessel)
- Stent retention during navigation
- High trackability of the delivery system

VBX FLEX: Eligibility criteria more reflective of real-world patients

- Patient population and treatment approach closely aligned with current standard of care
- Allowed for more challenging patient population (anatomy and disease) than that seen in historical iliac stent studies - eligibility criteria permitted (without limitation) patients with:
 - Tortuous iliacs
 - Severe lesion calcification
 - Total occlusions
 - Need for direct stenting (pre-dilatation not required)
 - Kissing stent treatment at the aortic bifurcation

VBX FLEX Study estimates of secondary endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>1 Week</th>
<th>3 Months</th>
<th>6 Months</th>
<th>12 Months</th>
<th>24 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>90.0% (98/109)</td>
<td>96.7% (106/110)</td>
<td>96.3% (112/115)</td>
<td>94.0% (114/121)</td>
<td>94.5% (120/126)</td>
</tr>
<tr>
<td>Secondary</td>
<td>90.0% (98/109)</td>
<td>96.7% (106/110)</td>
<td>96.3% (112/115)</td>
<td>94.0% (114/121)</td>
<td>94.5% (120/126)</td>
</tr>
</tbody>
</table>

VCORE (iCast)

- Prospective, multicenter RCT comparing iCast to BMS
- Primary endpoint: Binary restenosis (defined by ≥50% reduction in lumen diameter) and freedom from stent occlusion at 18 months
- Anatomic criteria:
 - Occluded superficial and profunda femoral arteries excluded
 - Evidence of TASC B, C, or D lesions, excluded TASC A
 - Hemodynamically significant dissections and recurrent stenosis after angioplasty

BOLSTER (Lifestream)

- Prospective, multicenter Single Arm
- Primary endpoint: Composite of device- or procedure-related death or myocardial infarction (MI) through 30 days; or target lesion revascularization (TLR), major amputation of the target limb (ie, at or above the ankle), or re-stenosis through 9 months
- Anatomic criteria:
 - Severe calcification of the target lesion(s) preventing predilation excluded
 - Single, bilateral, or multiple lesions >50% de novo or restenotic (nonstented) in the common or external iliac artery (investigator’s visual estimate)
 - A lesion that could be crossed with a guidewire and predilated with a PTA balloon; chronic total occlusion catheters or reentry devices were allowed
 - Excluded a preexisting aneurysm, perforation, or dissection of the target iliac
 - Excluded target lesion located in the distal external iliac artery
 - Excluded target lesion involving the origin of the internal iliac artery, unless the internal iliac artery is already occluded

VTA

- VTA = external iliac artery; fTLR = freedom from target lesion revascularization; fCD-TLR = freedom from clinically driven TLR; TASC II C and D = TransAtlantic Inter-Society Consensus II (TASC II) C and D; NE = not evaluable.

* Kaplan-Meier Estimates of Secondary Endpoints Evaluated on a Per-Patient Basis
** EIA evaluated on a per-lesion basis

1. Holden A. Comparison of four balloon expandable covered stents for the treatment of aorto-iliac occlusive lesions: which, where and when? Presented at the 45th Annual Symposium on Vascular and Endovascular Issues, Techniques, Horizons (VEITHsymposium); November 13-17, 2018; New York, N Y.
Change in Rutherford category

<table>
<thead>
<tr>
<th>Change in Rutherford category</th>
<th>30 days</th>
<th>2 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>34.80%</td>
<td>34.00%</td>
<td>34.60%</td>
</tr>
<tr>
<td>Unchanged</td>
<td>54.40%</td>
<td>54.00%</td>
<td>54.30%</td>
</tr>
<tr>
<td>Worsened</td>
<td>10.80%</td>
<td>12.00%</td>
<td>11.10%</td>
</tr>
</tbody>
</table>

Resting ABI

<table>
<thead>
<tr>
<th>ABI score</th>
<th>Pre-op</th>
<th>9 months</th>
<th>24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI score</td>
<td>0.77 (0.37)</td>
<td>0.71 (0.11)</td>
<td>0.56 (0.38)</td>
</tr>
</tbody>
</table>

Treatment Pearls

- CTA improves preoperative planning
- Calcified lesions, particularly at the iliac ostium, are best treated with balloon-expandable stents.
- SESs are generally more appropriate for EIAs, although VBX has shown itself just as effective
- Covered stents provide greater durability and safety compared to bare-metal stents.
- Optimizing outflow with a CFA endarterectomy using a hybrid technique can be critical to preserve long-term patency
- Use the CERAB technique when the lateral wall of the distal aorta has plaque to preserve iliac cross-over and maximize laminar flow.

Conclusions

- Proven efficacy and benefits of covered stents for the treatment of iliac occlusive disease
- Multiple stents available and approved for treatment of the aortoiliac segments, but essential features should be considered:
 - Trackability
 - Radial strength
 - Conformability
 - Stent retention
- Reliability and long-term results should guide practice patterns