Value of the CERAB Procedure for Failed Iliac Stents: Technical Tips and Best Stent-Graft

Maria Antonella Ruffino, MD, EBIR
Vascular Radiology
Department of Diagnostic Imaging and Radiotherapy
Città della Salute e della Scienza di Torino - Italy

Disclosure

Speaker name: Maria Antonella Ruffino MD, EBIR

I have the following potential conflicts of interest to report:

- Receipt of grants/research support
- Receipt of honoraria and travel support
- Participation in a company sponsored speakers’ bureau
- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company

X I do not have any potential conflict of interest

TECHNICAL SUCCESS: 99.1% (572/532)

Most of the lesions TASC D

BMS 91.9% (57.8% SE) - CS 8.1%

Protruding in distal aorta and crossed 67.3%

30-day complication rate 8.2% (bleeding 2.3%)

@24 MONTHS

Primary patency: 81% (open surgery 93%)
Secondary patency: 95%

@60 MONTHS

Primary patency: 73%
Secondary patency: 100%

RATE OF INTERVENTIONS AT 2 YEARS

between 0% and 62.5% with a mean of 20.9%

RELINING WITH BARE METAL STENT OR STENT-GRAPHTIPS

Patency can be influenced by procedural choices:

- Type of stent
- Stent protrusion
- Pre and post-dilation
- Geometrical consequences of KS (large recirculation zones at the aortic bifurcation)*
- Previous intervention was found as a predictor of secondary patency loss for KS

Patency can be influenced by procedural choices:

- Larger profile sheath
- AFX have to be deployed directly on the native aortic bifurcation
- Predilation of chronic occlusion is imperative (severe resistance during deployment to allow easier rotation of the device as needed)
- Previous 24h catheter-direct thrombolysis
- Small aortic diameter vs. big device diameter
- Length of aortic body
- Risk of overstenting of lumbar arteries, IMA
- High rate of adjunctive stenting of distal aorta (calcification) and of iliac limbs to avoid collapse (up to 59%)
- Procedure more time consuming/ higher level of technical skill

RELINING WITH AORTIC DEVICES

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.

EVAR is not an “one size fits all”

It is designed for aneurysm disease, not stenotic conditions.
AVAILABLE SELF-EXPANDABLE STENTGRAFTS

Self-Expandable
- Boston Scientific Wallgraft
- Bard Flexiency Plus® Framed
- Bard COVERA®
- Gore Viabahn®

+ AORTIC CUFF

LIMITS:
- Low radial force
- High profile
- Not customizable
- Can’t be overdilated to adapt patient anatomy
- Aortic cuff intended for aneurysmatic disease

AVAILABLE BALLOON-EXPANDABLE STENTGRAFTS

Balloon-Expandable
- iCAST/Advanta V12, Getinge:
 - no stentgraft larger than 10 mm
- LifeStream, BD:
 - high rate of in-stent restenosis in iliac procedures*
- Viabahn VBX, Gore:
 - Expansion larger than 13 mm is outside IFU
 - 16 mm: technical limit of the device

*BD, Bard field notice October 2018

Low profile: 9 Fr.

12 mm Aortic stent can be postdilated up to 20 mm

Main body
- BeGraft Aortic
 - Diameters: 12-14-16-18-20-22-24 mm
 - Max. Post-dil.: 30 mm (on label)
 - Length: 19-29-39-49-59 mm
- Flexible stent design
- Less shortening
- Good trackability/visibility

Legs
- BeGraft Peripheral
 - Diameters: 5-6-7-8-9-10 mm
 - Length: 18-22-27/28-37/38-57/58 mm

This combination of stentgrafts allows physicians to respect the criteria of CERAB also in case of previous failed iliac stenting

CASE 1
Male, 57 yo, active smoker
- 2016: PTA + Stenting RCIA (balloon-expandable BMS, Visi-Pro, Medtronic) + R fem-fem bypass
- May 2019 – right CLI, stent occlusion, relining with self-expandable CS (Viabahn, Gore)
- October 2019 – right CLI, RCIA and REIA occlusion

Pharmacological thrombolysis
- Alteplase 3.5 mg + 3.5 mg/250 ml saline 63ml/h
- Alteplase 2 mg/500ml saline 42ml/h
- Heparin 5000UI/500ml saline 32ml/h (sheath)

16-10-19

BeGraft Stentgraft Bentley InnoMed, Hechingen

- This combination of stentgrafts allows physicians to respect the criteria of CERAB also in case of previous failed iliac stenting
CASE 1

Male, 72 yo, former smoker, hypertension
- 2015 – aortic bifurcation kissing stenting with SE BMS
- June 2018 – right limb claudication ≤100m
- June 2018 DUS – partial occlusion of aortic carrefour and right CIA occlusion

CASE 2

Male, 72 yo, former smoker, hypertension
- 2015 – aortic bifurcation kissing stenting with SE BMS
- June 2018 – right limb claudication ≤100m
- June 2018 DUS – partial occlusion of aortic carrefour and right CIA occlusion

CASE 3

Male, 69 yo, active smoker, hypertension
- 2014 – SE BMS kissing stenting
- June 2019 – right buttock claudication ≤50 m CLI
- June 2019 – CT scan: CIA in-stent restenosis

CASE 3

Male, 69 yo, active smoker, hypertension
- 2014 – SE BMS kissing stenting
- June 2019 – right buttock claudication ≤50 m CLI
- June 2019 – CT scan: CIA in-stent restenosis
TAKE-HOME MESSAGE

- Iliac stents DO re-stenose
- CERAB is a tailor-made solution which can be adapted to almost all anatomies to restore blood flow in both de-novo and/or failed iliac stenting
- Particular attention must be paid to:
 - Previous type of iliac stenting
 - Patient anatomy (sizing & visceral vessels take-off)
 - Right device (stent) selection
- With the Bentley BeGraft Bentley stentgrafts, almost all procedures can be performed with:
 - 9F. introducer sheath
 - a single 12 mm aortic stentgraft
 - 6 Fr. introducer sheath
 - two 8 mm peripheral stentgrafts

CERAB
- 9F and 7F sheaths
- BeGraft Aortic 12x29 mm
- Aortic stent overdilation at 20 mm
- 2x BeGraft Peripheral 10x57 mm