RENAL ARTERY ANEURYSMS (RAA’S)

- Rupture rate estimated in < 3%
- When ruptured, the estimated non-gestacional MORTALITY is 10%
- Historically, treatment is indicated when RAA > 2 cm

Although,
- Scarce evidence regarding RAA’s natural history
- Some authors believe such threshold is too aggressive

WHEN ARE THEY DANGEROUS?

- Several conditions are known to INCREASE the risk of aneurysm Rupture
- Prompt treatment should be considered, regardless of their size, in:
 - Pregnant women
 - Women of childbearing age
 - Symptomatic aneurysm (pain; hematuria)
 - Medically refractory hypertension
 - Thromboembolism
 - Dissection
 - Polyarteritis nodosa

TREATMENT OPTIONS

ENDOVASCULAR TREATMENT
- Exclusion with covered stent
- Selective coil embolization
- Coil and cage
- Superselective segmental branch embolization

OPEN SURGERY
- Aneurysmorphy with primary repair and patch angioplasty
- Resection and end-to-end anastomosis
- Bypass
- Extravalvular repair
- Nephrectomy

Choice of technique is highly dependent on LOCAL ANATOMY

DISCLOSURES

• nothing to declare

ANATOMICAL DISTRIBUTION

- The majority are EXTRAPARENCHYMAL
- 80% are SACCULAR
- Most common location is the renal artery bifurcation
- For unknown reasons, right RAA’s are more common
RUNDBACK CLASSIFICATION

Type I
Saccular aneurysms arising from the main renal artery or the large segmental branch

Type II
Fusiform aneurysms arising from the main renal artery or the large segmental branch

RUNDBACK CLASSIFICATION

Type III
Intralobar aneurysms arising from small segmental arteries or accessory arteries

ENDOVASCULAR OPTIONS FOR RAA’s

1. COVERED STENT EXCLUSION
- Aneurysm must be located up to 15mm from the renal artery ostium
- Requires distal landing zones proximal to the RAA bifurcation
- Presence of nurturing branches originating from the aneurysm sac should exclude this technique, due to the risk of retrograde perfusion
- Usually restricted to TRUNCAL ANEURYSMS, namely:
 - Proximal Type I RAA
 - Proximal Type II RAA

ENDOVASCULAR OPTIONS FOR RAA’s

2. SELECTIVE COIL EMBOLIZATION
- Adaptation of the classic aneurysm sac coiling technique
- Uses a self-expandable stent to cage the coils in the aneurysm sac, and therefore prevent distal coil migration
- Usually useful in:
 - Type I RAA with wide necks
 - Proximal Type II RAA

ENDOVASCULAR OPTIONS FOR RAA’s

3. “COIL AND CAGE” TECHNIQUE
- Adaptation of the classic aneurysm sac coiling technique
- Uses a self-expandable stent to cage the coils in the aneurysm sac, and therefore prevent distal coil migration
- Usually useful in:
 - Type I RAA with wide necks
 - Proximal Type II RAA
ENDOVASCULAR OPTIONS FOR RAA's

4. **SUPERSELECTIVE EMBOLIZATION OF RENAL SEGMENTAL BRANCHES**

- Glue, Onix® or microcoils
- The occlusion of the native segmental vessel causes a small RENAL INFARCTION
- Restricted to **type III RAA** not amendable by other techniques

WHEN IS OPEN REPAIR INDICATED?

- Although there seems to be a consensus on endovascular treatment regarding **truncal and intra-parenchymatous aneurysms**:

 TRUNCAL RAA
 - Proximal type I RAA
 - Proximal type II RAA

 INTRA-PARENCHYMATOUS RAA
 - Type II RAA

- Renal branch aneurysms (Distal Type I and Type II) are more challenging, and their treatment options remain open for discussion

CONCLUSION

- Renal artery aneurysms are rare pathologies, with significant mortality rates when ruptured
- Available comparative studies reported **NO DIFFERENCES** between open or endovascular interventions
- **ENDOVASCULAR TREATMENT** should be considered the first treatment option for truncal and intra-parenchymatous aneurysms
- Renal artery **BRANCH** aneurysms can be treated by either **OPEN** or **ENDOVASCULAR** techniques, provided the centre has proper expertise in the technique used

RENAL ARTERY ANEURYSMS: WHEN ARE THEY DANGEROUS ENDOVASCULAR TECHNIQUES FOR TREATMENT WHEN IS OPEN REPAIR INDICATED

Armando Mansilha, MD, PhD, FEBVS
Joel Sousa, MD